{"title":"水动力盐度梯度中的碳氢化合物捕集:威利斯顿盆地案例研究","authors":"David M. Petty","doi":"10.1306/02242322092","DOIUrl":null,"url":null,"abstract":"Hydrodynamic salinity gradients occur in aquifers where lateral salinity changes are caused by regional water flow. Hydrodynamic salinity gradients are highly favorable for oil entrapment in areas where less-saline waters flow downdip to replace more-saline waters because the “tilt amplification factor” increases in updip areas where the oil–water contact tilt may exceed the regional structural dip and induce basinward oil displacement. This can concentrate oil by downdip remigration. Downdip barriers, such as monoclines, may be the dominant structural control. Composite hydrodynamic accumulations consist of oil-productive areas that may not be interconnected but have a common, hydrodynamically tilted, free-water level. They form in regions where the oil–water contact tilt is similar in magnitude and direction to the regional dip. In the southwestern part of the Williston Basin, structurally modified, composite hydrodynamic accumulations that lie within brackish-water to saline-water hydrodynamic salinity gradients occur in the Mississippian Madison Group and Ordovician Red River Formation reservoirs. These oil accumulations have average oil–water contact tilts that range from 22 to 80 ft/mi (4 to 15 m/km) toward the northeast. Individual composite oil accumulations can cover areas larger than 300 mi2 (777 km2) and hold at least 1.6 billion bbl of oil-in-place.","PeriodicalId":7124,"journal":{"name":"AAPG Bulletin","volume":"33 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrocarbon trapping in hydrodynamic salinity gradients: Williston Basin case studies\",\"authors\":\"David M. Petty\",\"doi\":\"10.1306/02242322092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrodynamic salinity gradients occur in aquifers where lateral salinity changes are caused by regional water flow. Hydrodynamic salinity gradients are highly favorable for oil entrapment in areas where less-saline waters flow downdip to replace more-saline waters because the “tilt amplification factor” increases in updip areas where the oil–water contact tilt may exceed the regional structural dip and induce basinward oil displacement. This can concentrate oil by downdip remigration. Downdip barriers, such as monoclines, may be the dominant structural control. Composite hydrodynamic accumulations consist of oil-productive areas that may not be interconnected but have a common, hydrodynamically tilted, free-water level. They form in regions where the oil–water contact tilt is similar in magnitude and direction to the regional dip. In the southwestern part of the Williston Basin, structurally modified, composite hydrodynamic accumulations that lie within brackish-water to saline-water hydrodynamic salinity gradients occur in the Mississippian Madison Group and Ordovician Red River Formation reservoirs. These oil accumulations have average oil–water contact tilts that range from 22 to 80 ft/mi (4 to 15 m/km) toward the northeast. Individual composite oil accumulations can cover areas larger than 300 mi2 (777 km2) and hold at least 1.6 billion bbl of oil-in-place.\",\"PeriodicalId\":7124,\"journal\":{\"name\":\"AAPG Bulletin\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPG Bulletin\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1306/02242322092\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPG Bulletin","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1306/02242322092","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Hydrocarbon trapping in hydrodynamic salinity gradients: Williston Basin case studies
Hydrodynamic salinity gradients occur in aquifers where lateral salinity changes are caused by regional water flow. Hydrodynamic salinity gradients are highly favorable for oil entrapment in areas where less-saline waters flow downdip to replace more-saline waters because the “tilt amplification factor” increases in updip areas where the oil–water contact tilt may exceed the regional structural dip and induce basinward oil displacement. This can concentrate oil by downdip remigration. Downdip barriers, such as monoclines, may be the dominant structural control. Composite hydrodynamic accumulations consist of oil-productive areas that may not be interconnected but have a common, hydrodynamically tilted, free-water level. They form in regions where the oil–water contact tilt is similar in magnitude and direction to the regional dip. In the southwestern part of the Williston Basin, structurally modified, composite hydrodynamic accumulations that lie within brackish-water to saline-water hydrodynamic salinity gradients occur in the Mississippian Madison Group and Ordovician Red River Formation reservoirs. These oil accumulations have average oil–water contact tilts that range from 22 to 80 ft/mi (4 to 15 m/km) toward the northeast. Individual composite oil accumulations can cover areas larger than 300 mi2 (777 km2) and hold at least 1.6 billion bbl of oil-in-place.
期刊介绍:
While the 21st-century AAPG Bulletin has undergone some changes since 1917, enlarging to 8 ½ x 11” size to incorporate more material and being published digitally as well as in print, it continues to adhere to the primary purpose of the organization, which is to advance the science of geology especially as it relates to petroleum, natural gas, other subsurface fluids, and mineral resources.
Delivered digitally or in print monthly to each AAPG Member as a part of membership dues, the AAPG Bulletin is one of the most respected, peer-reviewed technical journals in existence, with recent issues containing papers focused on such topics as the Middle East, channel detection, China, permeability, subseismic fault prediction, the U.S., and Africa.