使用 DtN 边界条件的自由表面波与浸没体的相互作用

IF 2.2 3区 工程技术 Q2 MECHANICS
Un-Ryong Rim, Pil-Sung Dong, Chol-Guk Jang
{"title":"使用 DtN 边界条件的自由表面波与浸没体的相互作用","authors":"Un-Ryong Rim,&nbsp;Pil-Sung Dong,&nbsp;Chol-Guk Jang","doi":"10.1007/s00162-023-00682-x","DOIUrl":null,"url":null,"abstract":"<p>Recently, Rim (Ocean Engng 239:711, 2021; J Ocean Engng Mar Energy 9:41-51, 2023 ) suggested an exact DtN artificial boundary condition to study the three-dimensional wave diffraction by stationary bodies. This paper is concerned with three-dimensional linear interaction between a submerged oscillating body with arbitrary shape and the regular water wave with finite depth. An exact Dirichlet-to-Neumann (DtN) boundary condition on a virtual cylindrical surface is derived, where the virtual surface is chosen so as to enclose the body and extract an interior subdomain with finite volume from the horizontally unbounded water domain. The DtN boundary condition is then applied to solve the interaction between the body and the linear wave in the interior subdomain by using boundary integral equation. Based on verification of the present model for a submerged vertical cylinder, the model is extended to the case of a submerged chamfer box with fillet radius in order to study 6-DoF oscillatory motion of the body under the free surface wave.</p>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"38 1","pages":"75 - 87"},"PeriodicalIF":2.2000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Free surface wave interaction with a submerged body using a DtN boundary condition\",\"authors\":\"Un-Ryong Rim,&nbsp;Pil-Sung Dong,&nbsp;Chol-Guk Jang\",\"doi\":\"10.1007/s00162-023-00682-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recently, Rim (Ocean Engng 239:711, 2021; J Ocean Engng Mar Energy 9:41-51, 2023 ) suggested an exact DtN artificial boundary condition to study the three-dimensional wave diffraction by stationary bodies. This paper is concerned with three-dimensional linear interaction between a submerged oscillating body with arbitrary shape and the regular water wave with finite depth. An exact Dirichlet-to-Neumann (DtN) boundary condition on a virtual cylindrical surface is derived, where the virtual surface is chosen so as to enclose the body and extract an interior subdomain with finite volume from the horizontally unbounded water domain. The DtN boundary condition is then applied to solve the interaction between the body and the linear wave in the interior subdomain by using boundary integral equation. Based on verification of the present model for a submerged vertical cylinder, the model is extended to the case of a submerged chamfer box with fillet radius in order to study 6-DoF oscillatory motion of the body under the free surface wave.</p>\",\"PeriodicalId\":795,\"journal\":{\"name\":\"Theoretical and Computational Fluid Dynamics\",\"volume\":\"38 1\",\"pages\":\"75 - 87\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Computational Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00162-023-00682-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00162-023-00682-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 最近,Rim (Ocean Engng 239:711, 2021; J Ocean Engng Mar Energy 9:41-51, 2023 ) 提出了一种精确的 DtN 人工边界条件来研究静止体的三维波衍射。本文研究任意形状的水下振动体与有限深度的规则水波之间的三维线性相互作用。本文推导了虚拟圆柱面上精确的 Dirichlet 到 Neumann(DtN)边界条件,其中虚拟表面的选择是为了将体包围起来,并从水平无界水域中提取一个具有有限体积的内部子域。然后应用 DtN 边界条件,利用边界积分方程解决内部子域中主体与线性波之间的相互作用。在对本模型进行水下垂直圆柱体验证的基础上,将模型扩展到具有圆角半径的水下倒角箱的情况,以研究自由表面波作用下体的 6-DoF 振荡运动。 图表摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Free surface wave interaction with a submerged body using a DtN boundary condition

Recently, Rim (Ocean Engng 239:711, 2021; J Ocean Engng Mar Energy 9:41-51, 2023 ) suggested an exact DtN artificial boundary condition to study the three-dimensional wave diffraction by stationary bodies. This paper is concerned with three-dimensional linear interaction between a submerged oscillating body with arbitrary shape and the regular water wave with finite depth. An exact Dirichlet-to-Neumann (DtN) boundary condition on a virtual cylindrical surface is derived, where the virtual surface is chosen so as to enclose the body and extract an interior subdomain with finite volume from the horizontally unbounded water domain. The DtN boundary condition is then applied to solve the interaction between the body and the linear wave in the interior subdomain by using boundary integral equation. Based on verification of the present model for a submerged vertical cylinder, the model is extended to the case of a submerged chamfer box with fillet radius in order to study 6-DoF oscillatory motion of the body under the free surface wave.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
2.90%
发文量
38
审稿时长
>12 weeks
期刊介绍: Theoretical and Computational Fluid Dynamics provides a forum for the cross fertilization of ideas, tools and techniques across all disciplines in which fluid flow plays a role. The focus is on aspects of fluid dynamics where theory and computation are used to provide insights and data upon which solid physical understanding is revealed. We seek research papers, invited review articles, brief communications, letters and comments addressing flow phenomena of relevance to aeronautical, geophysical, environmental, material, mechanical and life sciences. Papers of a purely algorithmic, experimental or engineering application nature, and papers without significant new physical insights, are outside the scope of this journal. For computational work, authors are responsible for ensuring that any artifacts of discretization and/or implementation are sufficiently controlled such that the numerical results unambiguously support the conclusions drawn. Where appropriate, and to the extent possible, such papers should either include or reference supporting documentation in the form of verification and validation studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信