旗变体的退化积及布雷尔-梅扎尔猜想的应用

Robin Bartlett
{"title":"旗变体的退化积及布雷尔-梅扎尔猜想的应用","authors":"Robin Bartlett","doi":"10.1007/s00029-023-00905-3","DOIUrl":null,"url":null,"abstract":"<p>We consider closed subschemes in the affine grassmannian obtained by degenerating <i>e</i>-fold products of flag varieties, embedded via a tuple of dominant cocharacters. For <span>\\(G= {\\text {GL}}_2\\)</span>, and cocharacters small relative to the characteristic, we relate the cycles of these degenerations to the representation theory of <i>G</i>. We then show that these degenerations smoothly model the geometry of (the special fibre of) low weight crystalline subspaces inside the Emerton–Gee stack classifying <i>p</i>-adic representations of the Galois group of a finite extension of <span>\\({\\mathbb {Q}}_p\\)</span>. As an application we prove new cases of the Breuil–Mézard conjecture in dimension two.</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degenerating products of flag varieties and applications to the Breuil–Mézard conjecture\",\"authors\":\"Robin Bartlett\",\"doi\":\"10.1007/s00029-023-00905-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider closed subschemes in the affine grassmannian obtained by degenerating <i>e</i>-fold products of flag varieties, embedded via a tuple of dominant cocharacters. For <span>\\\\(G= {\\\\text {GL}}_2\\\\)</span>, and cocharacters small relative to the characteristic, we relate the cycles of these degenerations to the representation theory of <i>G</i>. We then show that these degenerations smoothly model the geometry of (the special fibre of) low weight crystalline subspaces inside the Emerton–Gee stack classifying <i>p</i>-adic representations of the Galois group of a finite extension of <span>\\\\({\\\\mathbb {Q}}_p\\\\)</span>. As an application we prove new cases of the Breuil–Mézard conjecture in dimension two.</p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-023-00905-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-023-00905-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了仿射草曼中的封闭子结构,这些封闭子结构是通过嵌入显性共色的元组,对旗变的 e 折积进行退化而得到的。对于 \(G= {\text {GL}}_2\),以及相对于特征较小的共变,我们将这些退化的周期与 G 的表示理论联系起来。我们接着证明,这些退化平滑地模拟了埃默顿-吉堆栈内部的(特殊纤维的)低权重结晶子空间的几何,该堆栈分类了 \({\mathbb {Q}}_p\) 的有限扩展的伽罗瓦群的 p-adic 表示。作为应用,我们证明了二维中布雷伊-梅扎德猜想的新情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Degenerating products of flag varieties and applications to the Breuil–Mézard conjecture

Degenerating products of flag varieties and applications to the Breuil–Mézard conjecture

We consider closed subschemes in the affine grassmannian obtained by degenerating e-fold products of flag varieties, embedded via a tuple of dominant cocharacters. For \(G= {\text {GL}}_2\), and cocharacters small relative to the characteristic, we relate the cycles of these degenerations to the representation theory of G. We then show that these degenerations smoothly model the geometry of (the special fibre of) low weight crystalline subspaces inside the Emerton–Gee stack classifying p-adic representations of the Galois group of a finite extension of \({\mathbb {Q}}_p\). As an application we prove new cases of the Breuil–Mézard conjecture in dimension two.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信