海森堡群上退化抛物方程的富士达型结果

Ahmad Z. Fino, Michael Ruzhansky, Berikbol T. Torebek
{"title":"海森堡群上退化抛物方程的富士达型结果","authors":"Ahmad Z. Fino, Michael Ruzhansky, Berikbol T. Torebek","doi":"10.1007/s00030-023-00907-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the Cauchy problem for the degenerate parabolic equations on the Heisenberg groups with power law non-linearities. We obtain Fujita-type critical exponents, which depend on the homogeneous dimension of the Heisenberg groups. The analysis includes the case of porous medium equations. Our proof approach is based on methods of nonlinear capacity estimates specifically adapted to the nature of the Heisenberg groups. We also use the Kaplan eigenfunctions method in combination with the Hopf-type lemma on the Heisenberg groups.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fujita-type results for the degenerate parabolic equations on the Heisenberg groups\",\"authors\":\"Ahmad Z. Fino, Michael Ruzhansky, Berikbol T. Torebek\",\"doi\":\"10.1007/s00030-023-00907-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider the Cauchy problem for the degenerate parabolic equations on the Heisenberg groups with power law non-linearities. We obtain Fujita-type critical exponents, which depend on the homogeneous dimension of the Heisenberg groups. The analysis includes the case of porous medium equations. Our proof approach is based on methods of nonlinear capacity estimates specifically adapted to the nature of the Heisenberg groups. We also use the Kaplan eigenfunctions method in combination with the Hopf-type lemma on the Heisenberg groups.</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-023-00907-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-023-00907-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了海森堡群上具有幂律非线性的退化抛物方程的考奇问题。我们得到了富士达型临界指数,它取决于海森堡群的同次元维度。分析包括多孔介质方程的情况。我们的证明方法基于非线性容量估计方法,特别适应海森堡群的性质。我们还将卡普兰特征函数法与海森堡群上的霍普夫型 Lemma 结合使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fujita-type results for the degenerate parabolic equations on the Heisenberg groups

In this paper, we consider the Cauchy problem for the degenerate parabolic equations on the Heisenberg groups with power law non-linearities. We obtain Fujita-type critical exponents, which depend on the homogeneous dimension of the Heisenberg groups. The analysis includes the case of porous medium equations. Our proof approach is based on methods of nonlinear capacity estimates specifically adapted to the nature of the Heisenberg groups. We also use the Kaplan eigenfunctions method in combination with the Hopf-type lemma on the Heisenberg groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信