关于阿廷-哈塞数列模数素数的一些系数

IF 0.5 4区 数学 Q3 MATHEMATICS
Marina Avitabile, Sandro Mattarei
{"title":"关于阿廷-哈塞数列模数素数的一些系数","authors":"Marina Avitabile,&nbsp;Sandro Mattarei","doi":"10.1016/j.indag.2024.01.003","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>p</mi></math></span> be an odd prime, and let <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>[</mo><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow><mo>]</mo></mrow></mrow></math></span> be the reduction modulo <span><math><mi>p</mi></math></span> of the Artin–Hasse exponential series. We obtain a polynomial expression for <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi><mi>p</mi></mrow></msub></math></span> in terms of those <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>r</mi><mi>p</mi></mrow></msub></math></span> with <span><math><mrow><mi>r</mi><mo>&lt;</mo><mi>k</mi></mrow></math></span>, for even <span><math><mrow><mi>k</mi><mo>&lt;</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></math></span>. A conjectural analogue covering the case of odd <span><math><mrow><mi>k</mi><mo>&lt;</mo><mi>p</mi></mrow></math></span> can be stated in various polynomial forms, essentially in terms of the polynomial <span><math><mrow><mi>γ</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>/</mo><mi>n</mi><mo>)</mo></mrow><msup><mrow><mi>X</mi></mrow><mrow><mi>p</mi><mo>−</mo><mi>n</mi></mrow></msup></mrow></math></span>, where <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> denotes the <span><math><mi>n</mi></math></span>th Bernoulli number.</p><p>We prove that <span><math><mrow><mi>γ</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> satisfies the functional equation <span><math><mrow><mi>γ</mi><mrow><mo>(</mo><mi>X</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>−</mo><mi>γ</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>£</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>+</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>−</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>−</mo><mn>1</mn></mrow></math></span> in <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>£</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> are the truncated logarithm and the Wilson quotient. This is an analogue modulo <span><math><mi>p</mi></math></span> of a functional equation, in <span><math><mrow><mi>Q</mi><mrow><mo>[</mo><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow><mo>]</mo></mrow></mrow></math></span>, established by Zagier for the power series <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>∞</mi></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>/</mo><mi>n</mi><mo>)</mo></mrow><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span>. The proof of our functional equation establishes a connection with a result of Nielsen of 1915, of which we provide a fresh proof. Our polynomial framing allows us to derive congruences for certain numerical sums involving divided Bernoulli numbers.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On some coefficients of the Artin–Hasse series modulo a prime\",\"authors\":\"Marina Avitabile,&nbsp;Sandro Mattarei\",\"doi\":\"10.1016/j.indag.2024.01.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>p</mi></math></span> be an odd prime, and let <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>[</mo><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow><mo>]</mo></mrow></mrow></math></span> be the reduction modulo <span><math><mi>p</mi></math></span> of the Artin–Hasse exponential series. We obtain a polynomial expression for <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi><mi>p</mi></mrow></msub></math></span> in terms of those <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>r</mi><mi>p</mi></mrow></msub></math></span> with <span><math><mrow><mi>r</mi><mo>&lt;</mo><mi>k</mi></mrow></math></span>, for even <span><math><mrow><mi>k</mi><mo>&lt;</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></math></span>. A conjectural analogue covering the case of odd <span><math><mrow><mi>k</mi><mo>&lt;</mo><mi>p</mi></mrow></math></span> can be stated in various polynomial forms, essentially in terms of the polynomial <span><math><mrow><mi>γ</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>/</mo><mi>n</mi><mo>)</mo></mrow><msup><mrow><mi>X</mi></mrow><mrow><mi>p</mi><mo>−</mo><mi>n</mi></mrow></msup></mrow></math></span>, where <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> denotes the <span><math><mi>n</mi></math></span>th Bernoulli number.</p><p>We prove that <span><math><mrow><mi>γ</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> satisfies the functional equation <span><math><mrow><mi>γ</mi><mrow><mo>(</mo><mi>X</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>−</mo><mi>γ</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>£</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>+</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>−</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>−</mo><mn>1</mn></mrow></math></span> in <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>£</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> are the truncated logarithm and the Wilson quotient. This is an analogue modulo <span><math><mi>p</mi></math></span> of a functional equation, in <span><math><mrow><mi>Q</mi><mrow><mo>[</mo><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow><mo>]</mo></mrow></mrow></math></span>, established by Zagier for the power series <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>∞</mi></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>/</mo><mi>n</mi><mo>)</mo></mrow><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span>. The proof of our functional equation establishes a connection with a result of Nielsen of 1915, of which we provide a fresh proof. Our polynomial framing allows us to derive congruences for certain numerical sums involving divided Bernoulli numbers.</p></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001935772400003X\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001935772400003X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 p 是奇素数,∑n=0∞anXn∈Fp[[X]]是阿廷-哈塞指数数列的模数 p 的还原。对于偶数 k<p3-1,我们用 r<k 表示 arp,得到 akp 的多项式表达式。对于奇数 k<p 的情况,可以用各种多项式形式,基本上用多项式 γ(X)=∑n=1p-2(Bn/n)Xp-n(其中 Bn 表示第 n 个伯努利数)来表示猜想中的类比。我们证明γ(X)满足函数方程γ(X-1)-γ(X)=£1(X)+Xp-1-wp-1 in Fp[X],其中£1(X)和 wp 是截断对数和威尔逊商。这是扎吉尔在 Q[[X]]中为幂级数∑n=1∞(Bn/n)Xn 建立的函数方程的模乘 p 的类比。我们的函数方程的证明与 1915 年尼尔森的一个结果建立了联系,我们对此提供了新的证明。我们的多项式框架使我们能够推导出涉及伯努利除数的某些数值和的同余式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On some coefficients of the Artin–Hasse series modulo a prime

Let p be an odd prime, and let n=0anXnFp[[X]] be the reduction modulo p of the Artin–Hasse exponential series. We obtain a polynomial expression for akp in terms of those arp with r<k, for even k<p31. A conjectural analogue covering the case of odd k<p can be stated in various polynomial forms, essentially in terms of the polynomial γ(X)=n=1p2(Bn/n)Xpn, where Bn denotes the nth Bernoulli number.

We prove that γ(X) satisfies the functional equation γ(X1)γ(X)=£1(X)+Xp1wp1 in Fp[X], where £1(X) and wp are the truncated logarithm and the Wilson quotient. This is an analogue modulo p of a functional equation, in Q[[X]], established by Zagier for the power series n=1(Bn/n)Xn. The proof of our functional equation establishes a connection with a result of Nielsen of 1915, of which we provide a fresh proof. Our polynomial framing allows us to derive congruences for certain numerical sums involving divided Bernoulli numbers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
74
审稿时长
79 days
期刊介绍: Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信