{"title":"关于阿廷-哈塞数列模数素数的一些系数","authors":"Marina Avitabile, Sandro Mattarei","doi":"10.1016/j.indag.2024.01.003","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>p</mi></math></span> be an odd prime, and let <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>[</mo><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow><mo>]</mo></mrow></mrow></math></span> be the reduction modulo <span><math><mi>p</mi></math></span> of the Artin–Hasse exponential series. We obtain a polynomial expression for <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi><mi>p</mi></mrow></msub></math></span> in terms of those <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>r</mi><mi>p</mi></mrow></msub></math></span> with <span><math><mrow><mi>r</mi><mo><</mo><mi>k</mi></mrow></math></span>, for even <span><math><mrow><mi>k</mi><mo><</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></math></span>. A conjectural analogue covering the case of odd <span><math><mrow><mi>k</mi><mo><</mo><mi>p</mi></mrow></math></span> can be stated in various polynomial forms, essentially in terms of the polynomial <span><math><mrow><mi>γ</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>/</mo><mi>n</mi><mo>)</mo></mrow><msup><mrow><mi>X</mi></mrow><mrow><mi>p</mi><mo>−</mo><mi>n</mi></mrow></msup></mrow></math></span>, where <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> denotes the <span><math><mi>n</mi></math></span>th Bernoulli number.</p><p>We prove that <span><math><mrow><mi>γ</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> satisfies the functional equation <span><math><mrow><mi>γ</mi><mrow><mo>(</mo><mi>X</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>−</mo><mi>γ</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>£</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>+</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>−</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>−</mo><mn>1</mn></mrow></math></span> in <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>£</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> are the truncated logarithm and the Wilson quotient. This is an analogue modulo <span><math><mi>p</mi></math></span> of a functional equation, in <span><math><mrow><mi>Q</mi><mrow><mo>[</mo><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow><mo>]</mo></mrow></mrow></math></span>, established by Zagier for the power series <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>∞</mi></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>/</mo><mi>n</mi><mo>)</mo></mrow><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span>. The proof of our functional equation establishes a connection with a result of Nielsen of 1915, of which we provide a fresh proof. Our polynomial framing allows us to derive congruences for certain numerical sums involving divided Bernoulli numbers.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 2","pages":"Pages 317-328"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On some coefficients of the Artin–Hasse series modulo a prime\",\"authors\":\"Marina Avitabile, Sandro Mattarei\",\"doi\":\"10.1016/j.indag.2024.01.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>p</mi></math></span> be an odd prime, and let <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>[</mo><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow><mo>]</mo></mrow></mrow></math></span> be the reduction modulo <span><math><mi>p</mi></math></span> of the Artin–Hasse exponential series. We obtain a polynomial expression for <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi><mi>p</mi></mrow></msub></math></span> in terms of those <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>r</mi><mi>p</mi></mrow></msub></math></span> with <span><math><mrow><mi>r</mi><mo><</mo><mi>k</mi></mrow></math></span>, for even <span><math><mrow><mi>k</mi><mo><</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></math></span>. A conjectural analogue covering the case of odd <span><math><mrow><mi>k</mi><mo><</mo><mi>p</mi></mrow></math></span> can be stated in various polynomial forms, essentially in terms of the polynomial <span><math><mrow><mi>γ</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>/</mo><mi>n</mi><mo>)</mo></mrow><msup><mrow><mi>X</mi></mrow><mrow><mi>p</mi><mo>−</mo><mi>n</mi></mrow></msup></mrow></math></span>, where <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> denotes the <span><math><mi>n</mi></math></span>th Bernoulli number.</p><p>We prove that <span><math><mrow><mi>γ</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> satisfies the functional equation <span><math><mrow><mi>γ</mi><mrow><mo>(</mo><mi>X</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>−</mo><mi>γ</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>£</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>+</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>−</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>−</mo><mn>1</mn></mrow></math></span> in <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>£</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> are the truncated logarithm and the Wilson quotient. This is an analogue modulo <span><math><mi>p</mi></math></span> of a functional equation, in <span><math><mrow><mi>Q</mi><mrow><mo>[</mo><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow><mo>]</mo></mrow></mrow></math></span>, established by Zagier for the power series <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>∞</mi></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>/</mo><mi>n</mi><mo>)</mo></mrow><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span>. The proof of our functional equation establishes a connection with a result of Nielsen of 1915, of which we provide a fresh proof. Our polynomial framing allows us to derive congruences for certain numerical sums involving divided Bernoulli numbers.</p></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"35 2\",\"pages\":\"Pages 317-328\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001935772400003X\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001935772400003X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 p 是奇素数,∑n=0∞anXn∈Fp[[X]]是阿廷-哈塞指数数列的模数 p 的还原。对于偶数 k<p3-1,我们用 r<k 表示 arp,得到 akp 的多项式表达式。对于奇数 k<p 的情况,可以用各种多项式形式,基本上用多项式 γ(X)=∑n=1p-2(Bn/n)Xp-n(其中 Bn 表示第 n 个伯努利数)来表示猜想中的类比。我们证明γ(X)满足函数方程γ(X-1)-γ(X)=£1(X)+Xp-1-wp-1 in Fp[X],其中£1(X)和 wp 是截断对数和威尔逊商。这是扎吉尔在 Q[[X]]中为幂级数∑n=1∞(Bn/n)Xn 建立的函数方程的模乘 p 的类比。我们的函数方程的证明与 1915 年尼尔森的一个结果建立了联系,我们对此提供了新的证明。我们的多项式框架使我们能够推导出涉及伯努利除数的某些数值和的同余式。
On some coefficients of the Artin–Hasse series modulo a prime
Let be an odd prime, and let be the reduction modulo of the Artin–Hasse exponential series. We obtain a polynomial expression for in terms of those with , for even . A conjectural analogue covering the case of odd can be stated in various polynomial forms, essentially in terms of the polynomial , where denotes the th Bernoulli number.
We prove that satisfies the functional equation in , where and are the truncated logarithm and the Wilson quotient. This is an analogue modulo of a functional equation, in , established by Zagier for the power series . The proof of our functional equation establishes a connection with a result of Nielsen of 1915, of which we provide a fresh proof. Our polynomial framing allows us to derive congruences for certain numerical sums involving divided Bernoulli numbers.
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.