法诺超曲面的有理内定型

Nathan Chen, David Stapleton
{"title":"法诺超曲面的有理内定型","authors":"Nathan Chen, David Stapleton","doi":"10.1007/s00029-023-00897-0","DOIUrl":null,"url":null,"abstract":"<p>We show that the degrees of rational endomorphisms of very general complex Fano and Calabi–Yau hypersurfaces satisfy certain congruence conditions by specializing to characteristic p. As a corollary we show that very general <i>n</i>-dimensional hypersurfaces of degree <span>\\(d\\ge \\lceil 5(n+3)/6\\rceil \\)</span> are not birational to Jacobian fibrations of dimension one. A key part of the argument is to resolve singularities of general <span>\\(\\mu _{p}\\)</span>-covers in mixed characteristic p.</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"29 24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational endomorphisms of Fano hypersurfaces\",\"authors\":\"Nathan Chen, David Stapleton\",\"doi\":\"10.1007/s00029-023-00897-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that the degrees of rational endomorphisms of very general complex Fano and Calabi–Yau hypersurfaces satisfy certain congruence conditions by specializing to characteristic p. As a corollary we show that very general <i>n</i>-dimensional hypersurfaces of degree <span>\\\\(d\\\\ge \\\\lceil 5(n+3)/6\\\\rceil \\\\)</span> are not birational to Jacobian fibrations of dimension one. A key part of the argument is to resolve singularities of general <span>\\\\(\\\\mu _{p}\\\\)</span>-covers in mixed characteristic p.</p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"29 24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-023-00897-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-023-00897-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为推论,我们证明了度数为 \(dge \lceil 5(n+3)/6\rceil \)的非常一般的 n 维超曲面与一维雅各布纤维不是双向的。论证的一个关键部分是解决混合特征 p 中一般 \(\mu _{p}\)- 盖的奇异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rational endomorphisms of Fano hypersurfaces

We show that the degrees of rational endomorphisms of very general complex Fano and Calabi–Yau hypersurfaces satisfy certain congruence conditions by specializing to characteristic p. As a corollary we show that very general n-dimensional hypersurfaces of degree \(d\ge \lceil 5(n+3)/6\rceil \) are not birational to Jacobian fibrations of dimension one. A key part of the argument is to resolve singularities of general \(\mu _{p}\)-covers in mixed characteristic p.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信