通过多模态和多尺度显微镜,对成纤维细胞抵御纳米GO团簇不利影响的能力进行 QPI 检测

IF 4.6 Q1 OPTICS
Marika Valentino, Daniele Pirone, Jaromir Béhal, Martina Mugnano, Rachele Castaldo, Giuseppe C Lama, Pasquale Memmolo, Lisa Miccio, Vittorio Bianco, Simonetta Grilli, Pietro Ferraro
{"title":"通过多模态和多尺度显微镜,对成纤维细胞抵御纳米GO团簇不利影响的能力进行 QPI 检测","authors":"Marika Valentino, Daniele Pirone, Jaromir Béhal, Martina Mugnano, Rachele Castaldo, Giuseppe C Lama, Pasquale Memmolo, Lisa Miccio, Vittorio Bianco, Simonetta Grilli, Pietro Ferraro","doi":"10.1088/2515-7647/ad1c6b","DOIUrl":null,"url":null,"abstract":"Graphene is considered a possible drug deliver in nanomedicine for its mechanical, physical and chemical characteristics. Thus, studying graphene biocompatibility is pivotal to contribute to the modern nano-therapy science. The coexistence between cells and graphene should be analysed using non-invasive technologies and thus quantitative phase imaging (QPI) modalities are suitable to investigate the morphometric evolution of cells under nanomaterial exposure. Here, we show how a multimodal QPI approach can furnish a noninvasive analysis for probing the dose-dependent effect of nanoGO clusters on adherent NIH 3T3 fibroblast cells. We rely on both digital holography and Fourier ptychography (FP) in transmission microscopy mode. The former allows accurate time-lapse experiments at the single cell level. The latter provides a wide field of view characterization at the cells network level, thus assuring a significant statistical measurement by exploiting the intrinsic large space-bandwidth product of FP. The combination of these two techniques allows one to extract multimodal information about the cell resilience to adverse effects of nanoGO in the surrounding buffer, namely through quantitative, multi-scale, and time-resolved characterization.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"QPI assay of fibroblasts resilience to adverse effects of nanoGO clusters by multimodal and multiscale microscopy\",\"authors\":\"Marika Valentino, Daniele Pirone, Jaromir Béhal, Martina Mugnano, Rachele Castaldo, Giuseppe C Lama, Pasquale Memmolo, Lisa Miccio, Vittorio Bianco, Simonetta Grilli, Pietro Ferraro\",\"doi\":\"10.1088/2515-7647/ad1c6b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphene is considered a possible drug deliver in nanomedicine for its mechanical, physical and chemical characteristics. Thus, studying graphene biocompatibility is pivotal to contribute to the modern nano-therapy science. The coexistence between cells and graphene should be analysed using non-invasive technologies and thus quantitative phase imaging (QPI) modalities are suitable to investigate the morphometric evolution of cells under nanomaterial exposure. Here, we show how a multimodal QPI approach can furnish a noninvasive analysis for probing the dose-dependent effect of nanoGO clusters on adherent NIH 3T3 fibroblast cells. We rely on both digital holography and Fourier ptychography (FP) in transmission microscopy mode. The former allows accurate time-lapse experiments at the single cell level. The latter provides a wide field of view characterization at the cells network level, thus assuring a significant statistical measurement by exploiting the intrinsic large space-bandwidth product of FP. The combination of these two techniques allows one to extract multimodal information about the cell resilience to adverse effects of nanoGO in the surrounding buffer, namely through quantitative, multi-scale, and time-resolved characterization.\",\"PeriodicalId\":44008,\"journal\":{\"name\":\"Journal of Physics-Photonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics-Photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2515-7647/ad1c6b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics-Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2515-7647/ad1c6b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

石墨烯因其机械、物理和化学特性而被认为是纳米医学中一种可能的药物输送材料。因此,研究石墨烯的生物相容性对现代纳米疗法科学的发展至关重要。细胞与石墨烯之间的共存应使用非侵入性技术进行分析,因此定量相位成像(QPI)模式适合研究细胞在纳米材料暴露下的形态演变。在这里,我们展示了一种多模态 QPI 方法如何提供无创分析,以探究纳米GO 簇对粘附的 NIH 3T3 成纤维细胞的剂量依赖性影响。我们在透射显微镜模式下同时使用了数字全息摄影和傅立叶层析成像(FP)技术。前者可以在单细胞水平上进行精确的延时实验。后者可在细胞网络层面提供宽视场表征,从而利用 FP 固有的大空间-带宽乘积确保重要的统计测量。将这两种技术结合起来,就能通过定量、多尺度和时间分辨表征,提取细胞对周围缓冲区中纳米有机物不利影响的多模态信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QPI assay of fibroblasts resilience to adverse effects of nanoGO clusters by multimodal and multiscale microscopy
Graphene is considered a possible drug deliver in nanomedicine for its mechanical, physical and chemical characteristics. Thus, studying graphene biocompatibility is pivotal to contribute to the modern nano-therapy science. The coexistence between cells and graphene should be analysed using non-invasive technologies and thus quantitative phase imaging (QPI) modalities are suitable to investigate the morphometric evolution of cells under nanomaterial exposure. Here, we show how a multimodal QPI approach can furnish a noninvasive analysis for probing the dose-dependent effect of nanoGO clusters on adherent NIH 3T3 fibroblast cells. We rely on both digital holography and Fourier ptychography (FP) in transmission microscopy mode. The former allows accurate time-lapse experiments at the single cell level. The latter provides a wide field of view characterization at the cells network level, thus assuring a significant statistical measurement by exploiting the intrinsic large space-bandwidth product of FP. The combination of these two techniques allows one to extract multimodal information about the cell resilience to adverse effects of nanoGO in the surrounding buffer, namely through quantitative, multi-scale, and time-resolved characterization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.70
自引率
0.00%
发文量
27
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信