求解准单调和非单调变分不等式

Pub Date : 2024-01-19 DOI:10.1007/s00186-023-00846-9
V. A. Uzor, T. O. Alakoya, O. T. Mewomo, A. Gibali
{"title":"求解准单调和非单调变分不等式","authors":"V. A. Uzor, T. O. Alakoya, O. T. Mewomo, A. Gibali","doi":"10.1007/s00186-023-00846-9","DOIUrl":null,"url":null,"abstract":"<p>We present a simple iterative method for solving quasimonotone as well as classical variational inequalities without monotonicity. Strong convergence analysis is given under mild conditions and thus generalize the few existing results that only present weak convergence methods under restrictive assumptions. We give finite and infinite dimensional numerical examples to compare and illustrate the simplicity and computational advantages of the proposed scheme.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving quasimonotone and non-monotone variational inequalities\",\"authors\":\"V. A. Uzor, T. O. Alakoya, O. T. Mewomo, A. Gibali\",\"doi\":\"10.1007/s00186-023-00846-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a simple iterative method for solving quasimonotone as well as classical variational inequalities without monotonicity. Strong convergence analysis is given under mild conditions and thus generalize the few existing results that only present weak convergence methods under restrictive assumptions. We give finite and infinite dimensional numerical examples to compare and illustrate the simplicity and computational advantages of the proposed scheme.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00186-023-00846-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00186-023-00846-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种简单的迭代方法,用于求解无单调性的类下调不等式和经典变分不等式。我们给出了在温和条件下的强收敛性分析,从而推广了仅在限制性假设下提出弱收敛方法的少数现有结果。我们给出了有限维和无限维数值示例,以比较和说明所提方案的简单性和计算优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Solving quasimonotone and non-monotone variational inequalities

分享
查看原文
Solving quasimonotone and non-monotone variational inequalities

We present a simple iterative method for solving quasimonotone as well as classical variational inequalities without monotonicity. Strong convergence analysis is given under mild conditions and thus generalize the few existing results that only present weak convergence methods under restrictive assumptions. We give finite and infinite dimensional numerical examples to compare and illustrate the simplicity and computational advantages of the proposed scheme.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信