{"title":"双层板大弯曲变形的伽马收敛 LDG 方法","authors":"Andrea Bonito, Ricardo H Nochetto, Shuo Yang","doi":"10.1093/imanum/drad100","DOIUrl":null,"url":null,"abstract":"Bilayer plates are slender structures made of two thin layers of different materials. They react to environmental stimuli and undergo large bending deformations with relatively small actuation. The reduced model is a constrained minimization problem for the second fundamental form, with a given spontaneous curvature that encodes material properties, subject to an isometry constraint. We design a local discontinuous Galerkin (LDG) method, which imposes a relaxed discrete isometry constraint and controls deformation gradients at barycenters of elements. We prove $\\varGamma $-convergence of LDG, design a fully practical gradient flow, which gives rise to a linear scheme at every step, and show energy stability and control of the isometry defect. We extend the $\\varGamma $-convergence analysis to piecewise quadratic creases. We also illustrate the performance of the LDG method with several insightful simulations of large deformations, one including a curved crease.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"4 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gamma-convergent LDG method for large bending deformations of bilayer plates\",\"authors\":\"Andrea Bonito, Ricardo H Nochetto, Shuo Yang\",\"doi\":\"10.1093/imanum/drad100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bilayer plates are slender structures made of two thin layers of different materials. They react to environmental stimuli and undergo large bending deformations with relatively small actuation. The reduced model is a constrained minimization problem for the second fundamental form, with a given spontaneous curvature that encodes material properties, subject to an isometry constraint. We design a local discontinuous Galerkin (LDG) method, which imposes a relaxed discrete isometry constraint and controls deformation gradients at barycenters of elements. We prove $\\\\varGamma $-convergence of LDG, design a fully practical gradient flow, which gives rise to a linear scheme at every step, and show energy stability and control of the isometry defect. We extend the $\\\\varGamma $-convergence analysis to piecewise quadratic creases. We also illustrate the performance of the LDG method with several insightful simulations of large deformations, one including a curved crease.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/drad100\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drad100","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Gamma-convergent LDG method for large bending deformations of bilayer plates
Bilayer plates are slender structures made of two thin layers of different materials. They react to environmental stimuli and undergo large bending deformations with relatively small actuation. The reduced model is a constrained minimization problem for the second fundamental form, with a given spontaneous curvature that encodes material properties, subject to an isometry constraint. We design a local discontinuous Galerkin (LDG) method, which imposes a relaxed discrete isometry constraint and controls deformation gradients at barycenters of elements. We prove $\varGamma $-convergence of LDG, design a fully practical gradient flow, which gives rise to a linear scheme at every step, and show energy stability and control of the isometry defect. We extend the $\varGamma $-convergence analysis to piecewise quadratic creases. We also illustrate the performance of the LDG method with several insightful simulations of large deformations, one including a curved crease.
期刊介绍:
The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.