双层板大弯曲变形的伽马收敛 LDG 方法

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Andrea Bonito, Ricardo H Nochetto, Shuo Yang
{"title":"双层板大弯曲变形的伽马收敛 LDG 方法","authors":"Andrea Bonito, Ricardo H Nochetto, Shuo Yang","doi":"10.1093/imanum/drad100","DOIUrl":null,"url":null,"abstract":"Bilayer plates are slender structures made of two thin layers of different materials. They react to environmental stimuli and undergo large bending deformations with relatively small actuation. The reduced model is a constrained minimization problem for the second fundamental form, with a given spontaneous curvature that encodes material properties, subject to an isometry constraint. We design a local discontinuous Galerkin (LDG) method, which imposes a relaxed discrete isometry constraint and controls deformation gradients at barycenters of elements. We prove $\\varGamma $-convergence of LDG, design a fully practical gradient flow, which gives rise to a linear scheme at every step, and show energy stability and control of the isometry defect. We extend the $\\varGamma $-convergence analysis to piecewise quadratic creases. We also illustrate the performance of the LDG method with several insightful simulations of large deformations, one including a curved crease.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"4 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gamma-convergent LDG method for large bending deformations of bilayer plates\",\"authors\":\"Andrea Bonito, Ricardo H Nochetto, Shuo Yang\",\"doi\":\"10.1093/imanum/drad100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bilayer plates are slender structures made of two thin layers of different materials. They react to environmental stimuli and undergo large bending deformations with relatively small actuation. The reduced model is a constrained minimization problem for the second fundamental form, with a given spontaneous curvature that encodes material properties, subject to an isometry constraint. We design a local discontinuous Galerkin (LDG) method, which imposes a relaxed discrete isometry constraint and controls deformation gradients at barycenters of elements. We prove $\\\\varGamma $-convergence of LDG, design a fully practical gradient flow, which gives rise to a linear scheme at every step, and show energy stability and control of the isometry defect. We extend the $\\\\varGamma $-convergence analysis to piecewise quadratic creases. We also illustrate the performance of the LDG method with several insightful simulations of large deformations, one including a curved crease.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/drad100\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drad100","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

双层板是由两层不同材料制成的细长结构。它们会对环境刺激做出反应,并在相对较小的驱动力下发生较大的弯曲变形。简化模型是第二基本形式的受约束最小化问题,具有编码材料特性的给定自发曲率,受等距约束。我们设计了一种局部非连续伽勒金(LDG)方法,该方法施加了一种宽松的离散等距约束,并控制元素原心处的变形梯度。我们证明了 LDG 的 $\varGamma $收敛性,设计了一个完全实用的梯度流,它在每一步都会产生一个线性方案,并展示了等距缺陷的能量稳定性和控制。我们将 $\varGamma $收敛分析扩展到了片断二次折痕。我们还通过对大变形(其中包括弯曲折痕)的深入模拟,说明了 LDG 方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gamma-convergent LDG method for large bending deformations of bilayer plates
Bilayer plates are slender structures made of two thin layers of different materials. They react to environmental stimuli and undergo large bending deformations with relatively small actuation. The reduced model is a constrained minimization problem for the second fundamental form, with a given spontaneous curvature that encodes material properties, subject to an isometry constraint. We design a local discontinuous Galerkin (LDG) method, which imposes a relaxed discrete isometry constraint and controls deformation gradients at barycenters of elements. We prove $\varGamma $-convergence of LDG, design a fully practical gradient flow, which gives rise to a linear scheme at every step, and show energy stability and control of the isometry defect. We extend the $\varGamma $-convergence analysis to piecewise quadratic creases. We also illustrate the performance of the LDG method with several insightful simulations of large deformations, one including a curved crease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信