{"title":"利用群集智能探索石墨炔吸附惰性气体的能量图谱","authors":"Megha Rajeevan, Rotti Srinivasamurthy Swathi","doi":"10.1016/j.aichem.2024.100048","DOIUrl":null,"url":null,"abstract":"<div><p>Gas adsorption on one-atom-thick membranes is a growing technology for separation applications owing to its excellent energy efficiency. Herein, we investigate the adsorption of the noble gases, Ne, Ar and Kr on graphynes (GYs), a novel class of one-atom-thick carbon membranes using a swarm intelligence technique, namely particle swarm optimization (PSO). Modeling the adsorption of noble gas clusters on two-dimensional substrates requires a thorough examination of the energy landscape. The high dimensionality of the problem makes it tricky to employ ab initio methods for such studies, necessitating the use of a metaheuristic global optimization technique such as PSO. We explored the adsorption of 1–30 atoms of Ne, Ar and Kr on α-, β-, γ- and rhombic-GYs to predict the most suitable form of GY for the adsorption of each of the gases. Employing the dispersion-corrected density functional theory (DFT-D) data for the adsorption of single gas atoms as the reference data, we parametrized two empirical pairwise potentials, namely, Lennard-Jones (LJ) and improved Lennard-Jones (ILJ) potentials. We then analyzed the growth pattern as well as the energetics of adsorption using the parametrized potentials, in combination with the PSO technique, which enabled us to predict the best possible membrane for the adsorption of the noble gases: α-GY for Ne and γ-GY for Ar and Kr. The accuracy of our modeling approach is further validated against DFT-D computations thereby establishing that PSO, when combined with the ILJ potential, can serve as a computationally feasible approach for modeling gas adsorption on GYs.</p></div>","PeriodicalId":72302,"journal":{"name":"Artificial intelligence chemistry","volume":"2 1","pages":"Article 100048"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S294974772400006X/pdfft?md5=13e8fd3ef313b8180bab9c56f7c85352&pid=1-s2.0-S294974772400006X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Exploring the energy landscape of graphynes for noble gas adsorption using swarm intelligence\",\"authors\":\"Megha Rajeevan, Rotti Srinivasamurthy Swathi\",\"doi\":\"10.1016/j.aichem.2024.100048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Gas adsorption on one-atom-thick membranes is a growing technology for separation applications owing to its excellent energy efficiency. Herein, we investigate the adsorption of the noble gases, Ne, Ar and Kr on graphynes (GYs), a novel class of one-atom-thick carbon membranes using a swarm intelligence technique, namely particle swarm optimization (PSO). Modeling the adsorption of noble gas clusters on two-dimensional substrates requires a thorough examination of the energy landscape. The high dimensionality of the problem makes it tricky to employ ab initio methods for such studies, necessitating the use of a metaheuristic global optimization technique such as PSO. We explored the adsorption of 1–30 atoms of Ne, Ar and Kr on α-, β-, γ- and rhombic-GYs to predict the most suitable form of GY for the adsorption of each of the gases. Employing the dispersion-corrected density functional theory (DFT-D) data for the adsorption of single gas atoms as the reference data, we parametrized two empirical pairwise potentials, namely, Lennard-Jones (LJ) and improved Lennard-Jones (ILJ) potentials. We then analyzed the growth pattern as well as the energetics of adsorption using the parametrized potentials, in combination with the PSO technique, which enabled us to predict the best possible membrane for the adsorption of the noble gases: α-GY for Ne and γ-GY for Ar and Kr. The accuracy of our modeling approach is further validated against DFT-D computations thereby establishing that PSO, when combined with the ILJ potential, can serve as a computationally feasible approach for modeling gas adsorption on GYs.</p></div>\",\"PeriodicalId\":72302,\"journal\":{\"name\":\"Artificial intelligence chemistry\",\"volume\":\"2 1\",\"pages\":\"Article 100048\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S294974772400006X/pdfft?md5=13e8fd3ef313b8180bab9c56f7c85352&pid=1-s2.0-S294974772400006X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S294974772400006X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294974772400006X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploring the energy landscape of graphynes for noble gas adsorption using swarm intelligence
Gas adsorption on one-atom-thick membranes is a growing technology for separation applications owing to its excellent energy efficiency. Herein, we investigate the adsorption of the noble gases, Ne, Ar and Kr on graphynes (GYs), a novel class of one-atom-thick carbon membranes using a swarm intelligence technique, namely particle swarm optimization (PSO). Modeling the adsorption of noble gas clusters on two-dimensional substrates requires a thorough examination of the energy landscape. The high dimensionality of the problem makes it tricky to employ ab initio methods for such studies, necessitating the use of a metaheuristic global optimization technique such as PSO. We explored the adsorption of 1–30 atoms of Ne, Ar and Kr on α-, β-, γ- and rhombic-GYs to predict the most suitable form of GY for the adsorption of each of the gases. Employing the dispersion-corrected density functional theory (DFT-D) data for the adsorption of single gas atoms as the reference data, we parametrized two empirical pairwise potentials, namely, Lennard-Jones (LJ) and improved Lennard-Jones (ILJ) potentials. We then analyzed the growth pattern as well as the energetics of adsorption using the parametrized potentials, in combination with the PSO technique, which enabled us to predict the best possible membrane for the adsorption of the noble gases: α-GY for Ne and γ-GY for Ar and Kr. The accuracy of our modeling approach is further validated against DFT-D computations thereby establishing that PSO, when combined with the ILJ potential, can serve as a computationally feasible approach for modeling gas adsorption on GYs.