Patricia A Ball Dunlap, Eun-Shim Nahm, Elizabeth E Umberfield
{"title":"护理学中以数据为中心的机器学习:概念澄清。","authors":"Patricia A Ball Dunlap, Eun-Shim Nahm, Elizabeth E Umberfield","doi":"10.1097/CIN.0000000000001102","DOIUrl":null,"url":null,"abstract":"<p><p>The ubiquity of electronic health records and health information exchanges has generated abundant administrative and clinical healthcare data. The vastness of this rich dataset presents an opportunity for emerging technologies (eg, artificial intelligence and machine learning) to assist clinicians and healthcare administrators with decision-making, predictive analytics, and more. Multiple studies have cited various applications for artificial intelligence and machine learning in nursing. However, what is unknown in the nursing discipline is that while greater than 90% of machine-learning implementations use a model-centric strategy, a fundamental change is occurring. Because of the limitations of this approach, the industry is beginning to pivot toward data-centric artificial intelligence. Nurses should be aware of the differences, including how each approach affects their engagement in designing human-intelligent-like technologies and their data usage, especially regarding electronic health records. Using the Norris Concept Clarification method, this article elucidates the data-centric machine learning concept for nursing. This is accomplished by (1) exploring the concept's origins in the data and computer science disciplines; (2) differentiating data- versus model-centric machine learning approaches, including introducing the machine-learning operation life cycle and process; and (3) explaining the advantages of the data-centric phenomenon, especially concerning nurses' engagement in technological design and proper data usage.</p>","PeriodicalId":50694,"journal":{"name":"Cin-Computers Informatics Nursing","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-Centric Machine Learning in Nursing: A Concept Clarification.\",\"authors\":\"Patricia A Ball Dunlap, Eun-Shim Nahm, Elizabeth E Umberfield\",\"doi\":\"10.1097/CIN.0000000000001102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ubiquity of electronic health records and health information exchanges has generated abundant administrative and clinical healthcare data. The vastness of this rich dataset presents an opportunity for emerging technologies (eg, artificial intelligence and machine learning) to assist clinicians and healthcare administrators with decision-making, predictive analytics, and more. Multiple studies have cited various applications for artificial intelligence and machine learning in nursing. However, what is unknown in the nursing discipline is that while greater than 90% of machine-learning implementations use a model-centric strategy, a fundamental change is occurring. Because of the limitations of this approach, the industry is beginning to pivot toward data-centric artificial intelligence. Nurses should be aware of the differences, including how each approach affects their engagement in designing human-intelligent-like technologies and their data usage, especially regarding electronic health records. Using the Norris Concept Clarification method, this article elucidates the data-centric machine learning concept for nursing. This is accomplished by (1) exploring the concept's origins in the data and computer science disciplines; (2) differentiating data- versus model-centric machine learning approaches, including introducing the machine-learning operation life cycle and process; and (3) explaining the advantages of the data-centric phenomenon, especially concerning nurses' engagement in technological design and proper data usage.</p>\",\"PeriodicalId\":50694,\"journal\":{\"name\":\"Cin-Computers Informatics Nursing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cin-Computers Informatics Nursing\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/CIN.0000000000001102\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cin-Computers Informatics Nursing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/CIN.0000000000001102","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Data-Centric Machine Learning in Nursing: A Concept Clarification.
The ubiquity of electronic health records and health information exchanges has generated abundant administrative and clinical healthcare data. The vastness of this rich dataset presents an opportunity for emerging technologies (eg, artificial intelligence and machine learning) to assist clinicians and healthcare administrators with decision-making, predictive analytics, and more. Multiple studies have cited various applications for artificial intelligence and machine learning in nursing. However, what is unknown in the nursing discipline is that while greater than 90% of machine-learning implementations use a model-centric strategy, a fundamental change is occurring. Because of the limitations of this approach, the industry is beginning to pivot toward data-centric artificial intelligence. Nurses should be aware of the differences, including how each approach affects their engagement in designing human-intelligent-like technologies and their data usage, especially regarding electronic health records. Using the Norris Concept Clarification method, this article elucidates the data-centric machine learning concept for nursing. This is accomplished by (1) exploring the concept's origins in the data and computer science disciplines; (2) differentiating data- versus model-centric machine learning approaches, including introducing the machine-learning operation life cycle and process; and (3) explaining the advantages of the data-centric phenomenon, especially concerning nurses' engagement in technological design and proper data usage.
期刊介绍:
For over 30 years, CIN: Computers, Informatics, Nursing has been at the interface of the science of information and the art of nursing, publishing articles on the latest developments in nursing informatics, research, education and administrative of health information technology. CIN connects you with colleagues as they share knowledge on implementation of electronic health records systems, design decision-support systems, incorporate evidence-based healthcare in practice, explore point-of-care computing in practice and education, and conceptually integrate nursing languages and standard data sets. Continuing education contact hours are available in every issue.