Junqi Lv, Shengmao Ma, Xiaowen Wang, Jifang Dang, Fuchun Ma
{"title":"PSMD12 通过激活 Nrf2/TrxR1 通路促进非小细胞肺癌的进展。","authors":"Junqi Lv, Shengmao Ma, Xiaowen Wang, Jifang Dang, Fuchun Ma","doi":"10.1007/s13258-023-01484-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Non-small cell lung cancer (NSCLC) contributes to the vast majority of cancer-related deaths. Proteasome 26S subunit, non-ATPase 12 (PSMD12), a subunit of 26S proteasome complex, is known to play the tumor-promoting role in several types of cancer but its function in NSCLC remains elusive.</p><p><strong>Objective: </strong>To explore the role and underlying mechanisms of PSMD12 in NSCLC.</p><p><strong>Methods: </strong>The PSMD12 expression in human normal lung epithelial cell line (BEAS-2B) and four NSCLC cell lines (A549, NCI-H1299, NCI-H1975, Calu-1) were determined by qRT-PCR and western blot. Malignant phenotypes of NSCLC cells were detected by CCK-8, EdU staining, immunofluorescence staining for E-cadherin, flow cytometry, and Transwell assays to assess cell viability, proliferation, epithelial-mesenchymal transition (EMT), apoptosis, migration and invasion. Dual luciferase assay was used to verify the regulatory role of transcription factor on the promoter.</p><p><strong>Results: </strong>We identified the upregulation of PSMD12 in NSCLC tissues based on the GEO datasets, which further verified in NSCLC and BEAS-2B cell lines. PSMD12 knockdown significantly suppressed malignant behaviors of NSCLC cells, including cell growth, invasion, and migration, while PSMD12 overexpression presented the opposite effects. Interestingly, we found that PSMD12 upregulated the tumor-promoting factor TrxR1 mRNA expression. For its potential mechanisms, we demonstrated that PSMD12 elevated transcription factor Nrf2 protein level and promoted Nrf2 nuclear translocation. And Nrf2 further increased TrxR1 promoter activity and enhanced TrxR1 transcription. Meanwhile, we proved that TrxR1 overexpression erased the inhibitory effect of PSMD12 knockdown.</p><p><strong>Conclusion: </strong>PSMD12 promotes NSCLC progression by activating the Nrf2/TrxR1 pathway, providing a novel prognostic and therapeutic target for NSCLC treatment.</p>","PeriodicalId":12675,"journal":{"name":"Genes & genomics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PSMD12 promotes non-small cell lung cancer progression through activating the Nrf2/TrxR1 pathway.\",\"authors\":\"Junqi Lv, Shengmao Ma, Xiaowen Wang, Jifang Dang, Fuchun Ma\",\"doi\":\"10.1007/s13258-023-01484-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Non-small cell lung cancer (NSCLC) contributes to the vast majority of cancer-related deaths. Proteasome 26S subunit, non-ATPase 12 (PSMD12), a subunit of 26S proteasome complex, is known to play the tumor-promoting role in several types of cancer but its function in NSCLC remains elusive.</p><p><strong>Objective: </strong>To explore the role and underlying mechanisms of PSMD12 in NSCLC.</p><p><strong>Methods: </strong>The PSMD12 expression in human normal lung epithelial cell line (BEAS-2B) and four NSCLC cell lines (A549, NCI-H1299, NCI-H1975, Calu-1) were determined by qRT-PCR and western blot. Malignant phenotypes of NSCLC cells were detected by CCK-8, EdU staining, immunofluorescence staining for E-cadherin, flow cytometry, and Transwell assays to assess cell viability, proliferation, epithelial-mesenchymal transition (EMT), apoptosis, migration and invasion. Dual luciferase assay was used to verify the regulatory role of transcription factor on the promoter.</p><p><strong>Results: </strong>We identified the upregulation of PSMD12 in NSCLC tissues based on the GEO datasets, which further verified in NSCLC and BEAS-2B cell lines. PSMD12 knockdown significantly suppressed malignant behaviors of NSCLC cells, including cell growth, invasion, and migration, while PSMD12 overexpression presented the opposite effects. Interestingly, we found that PSMD12 upregulated the tumor-promoting factor TrxR1 mRNA expression. For its potential mechanisms, we demonstrated that PSMD12 elevated transcription factor Nrf2 protein level and promoted Nrf2 nuclear translocation. And Nrf2 further increased TrxR1 promoter activity and enhanced TrxR1 transcription. Meanwhile, we proved that TrxR1 overexpression erased the inhibitory effect of PSMD12 knockdown.</p><p><strong>Conclusion: </strong>PSMD12 promotes NSCLC progression by activating the Nrf2/TrxR1 pathway, providing a novel prognostic and therapeutic target for NSCLC treatment.</p>\",\"PeriodicalId\":12675,\"journal\":{\"name\":\"Genes & genomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes & genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13258-023-01484-5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13258-023-01484-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/19 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
PSMD12 promotes non-small cell lung cancer progression through activating the Nrf2/TrxR1 pathway.
Background: Non-small cell lung cancer (NSCLC) contributes to the vast majority of cancer-related deaths. Proteasome 26S subunit, non-ATPase 12 (PSMD12), a subunit of 26S proteasome complex, is known to play the tumor-promoting role in several types of cancer but its function in NSCLC remains elusive.
Objective: To explore the role and underlying mechanisms of PSMD12 in NSCLC.
Methods: The PSMD12 expression in human normal lung epithelial cell line (BEAS-2B) and four NSCLC cell lines (A549, NCI-H1299, NCI-H1975, Calu-1) were determined by qRT-PCR and western blot. Malignant phenotypes of NSCLC cells were detected by CCK-8, EdU staining, immunofluorescence staining for E-cadherin, flow cytometry, and Transwell assays to assess cell viability, proliferation, epithelial-mesenchymal transition (EMT), apoptosis, migration and invasion. Dual luciferase assay was used to verify the regulatory role of transcription factor on the promoter.
Results: We identified the upregulation of PSMD12 in NSCLC tissues based on the GEO datasets, which further verified in NSCLC and BEAS-2B cell lines. PSMD12 knockdown significantly suppressed malignant behaviors of NSCLC cells, including cell growth, invasion, and migration, while PSMD12 overexpression presented the opposite effects. Interestingly, we found that PSMD12 upregulated the tumor-promoting factor TrxR1 mRNA expression. For its potential mechanisms, we demonstrated that PSMD12 elevated transcription factor Nrf2 protein level and promoted Nrf2 nuclear translocation. And Nrf2 further increased TrxR1 promoter activity and enhanced TrxR1 transcription. Meanwhile, we proved that TrxR1 overexpression erased the inhibitory effect of PSMD12 knockdown.
Conclusion: PSMD12 promotes NSCLC progression by activating the Nrf2/TrxR1 pathway, providing a novel prognostic and therapeutic target for NSCLC treatment.
期刊介绍:
Genes & Genomics is an official journal of the Korean Genetics Society (http://kgenetics.or.kr/). Although it is an official publication of the Genetics Society of Korea, membership of the Society is not required for contributors. It is a peer-reviewed international journal publishing print (ISSN 1976-9571) and online version (E-ISSN 2092-9293). It covers all disciplines of genetics and genomics from prokaryotes to eukaryotes from fundamental heredity to molecular aspects. The articles can be reviews, research articles, and short communications.