论某些域的双曲公设

IF 0.6 4区 数学 Q3 MATHEMATICS
Aimo Hinkkanen, Matti Vuorinen
{"title":"论某些域的双曲公设","authors":"Aimo Hinkkanen, Matti Vuorinen","doi":"10.1007/s40315-023-00518-z","DOIUrl":null,"url":null,"abstract":"<p>We prove that if <i>E</i> is a compact subset of the unit disk <span>\\({{\\mathbb {D}}}\\)</span> in the complex plane, if <i>E</i> contains a sequence of distinct points <span>\\(a_n\\not = 0\\)</span> for <span>\\(n\\ge 1\\)</span> such that <span>\\(\\lim _{n\\rightarrow \\infty } a_n=0\\)</span> and for all <i>n</i> we have <span>\\( |a_{n+1}| \\ge |a_n|/2 \\)</span>, and if <span>\\(G={{\\mathbb {D}}} {\\setminus } E\\)</span> is connected and <span>\\(0\\in \\partial G\\)</span>, then there is a constant <span>\\(c&gt;0\\)</span> such that for all <span>\\(z\\in G\\)</span> we have <span>\\( \\lambda _{G } (z) \\ge c/|z| \\)</span> where <span>\\(\\lambda _{G } (z)\\)</span> is the density of the hyperbolic metric in <i>G</i>.</p>","PeriodicalId":49088,"journal":{"name":"Computational Methods and Function Theory","volume":"108 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Hyperbolic Metric of Certain Domains\",\"authors\":\"Aimo Hinkkanen, Matti Vuorinen\",\"doi\":\"10.1007/s40315-023-00518-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that if <i>E</i> is a compact subset of the unit disk <span>\\\\({{\\\\mathbb {D}}}\\\\)</span> in the complex plane, if <i>E</i> contains a sequence of distinct points <span>\\\\(a_n\\\\not = 0\\\\)</span> for <span>\\\\(n\\\\ge 1\\\\)</span> such that <span>\\\\(\\\\lim _{n\\\\rightarrow \\\\infty } a_n=0\\\\)</span> and for all <i>n</i> we have <span>\\\\( |a_{n+1}| \\\\ge |a_n|/2 \\\\)</span>, and if <span>\\\\(G={{\\\\mathbb {D}}} {\\\\setminus } E\\\\)</span> is connected and <span>\\\\(0\\\\in \\\\partial G\\\\)</span>, then there is a constant <span>\\\\(c&gt;0\\\\)</span> such that for all <span>\\\\(z\\\\in G\\\\)</span> we have <span>\\\\( \\\\lambda _{G } (z) \\\\ge c/|z| \\\\)</span> where <span>\\\\(\\\\lambda _{G } (z)\\\\)</span> is the density of the hyperbolic metric in <i>G</i>.</p>\",\"PeriodicalId\":49088,\"journal\":{\"name\":\"Computational Methods and Function Theory\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods and Function Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40315-023-00518-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods and Function Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40315-023-00518-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,如果 E 是复平面上单位盘 \({{\mathbb {D}}}\) 的一个紧凑子集,如果 E 包含一系列不同点 \(a_n\not = 0\) for \(n\ge 1\) such that \(\lim _{n\rightarrow \infty } a_n=0\) and for all n we have \( |a_{n+1}| \ge |a_n|/2 \)、如果(G={{\mathbb {D}}} {\setminus } E\ )是连通的,并且(0\in \partial G\ ),那么有一个常数(c>;0),这样对于所有的(z在G中),我们都有\( \lambda _{G } (z)\ge c/(z) \ge c/|z| \) where \(\lambda _{G } (z)\) is the means of the G.(z)\) 是 G 中双曲度量的密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Hyperbolic Metric of Certain Domains

We prove that if E is a compact subset of the unit disk \({{\mathbb {D}}}\) in the complex plane, if E contains a sequence of distinct points \(a_n\not = 0\) for \(n\ge 1\) such that \(\lim _{n\rightarrow \infty } a_n=0\) and for all n we have \( |a_{n+1}| \ge |a_n|/2 \), and if \(G={{\mathbb {D}}} {\setminus } E\) is connected and \(0\in \partial G\), then there is a constant \(c>0\) such that for all \(z\in G\) we have \( \lambda _{G } (z) \ge c/|z| \) where \(\lambda _{G } (z)\) is the density of the hyperbolic metric in G.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Methods and Function Theory
Computational Methods and Function Theory MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.20
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: CMFT is an international mathematics journal which publishes carefully selected original research papers in complex analysis (in a broad sense), and on applications or computational methods related to complex analysis. Survey articles of high standard and current interest can be considered for publication as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信