映射李代数上的一类多项式模块

IF 1.1 4区 数学 Q1 MATHEMATICS
Hongjia Chen, Han Dai, Xingpeng Liu
{"title":"映射李代数上的一类多项式模块","authors":"Hongjia Chen, Han Dai, Xingpeng Liu","doi":"10.1007/s40304-023-00356-4","DOIUrl":null,"url":null,"abstract":"<p>For any finitely generated unital commutative associative algebra <span>\\(\\mathcal {R}\\)</span> over <span>\\(\\mathbb {C}\\)</span> and any complex finite-dimensional simple Lie algebra <span>\\(\\mathfrak {g}\\)</span> with a fixed Cartan subalgebra <span>\\(\\mathfrak {h}\\)</span>, we classify all <span>\\(\\mathfrak {g}\\otimes \\mathcal {R}\\)</span>-modules on <span>\\(U(\\mathfrak {h})\\)</span> such that <span>\\(\\mathfrak {h}\\)</span> as a subalgebra of <span>\\(\\mathfrak {g}\\otimes \\mathcal {R}\\)</span>, acts on <span>\\(U(\\mathfrak {h})\\)</span> by the multiplication. We construct these modules explicitly and study their module structures.</p>","PeriodicalId":10575,"journal":{"name":"Communications in Mathematics and Statistics","volume":"18 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Class of Polynomial Modules over Map Lie Algebras\",\"authors\":\"Hongjia Chen, Han Dai, Xingpeng Liu\",\"doi\":\"10.1007/s40304-023-00356-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For any finitely generated unital commutative associative algebra <span>\\\\(\\\\mathcal {R}\\\\)</span> over <span>\\\\(\\\\mathbb {C}\\\\)</span> and any complex finite-dimensional simple Lie algebra <span>\\\\(\\\\mathfrak {g}\\\\)</span> with a fixed Cartan subalgebra <span>\\\\(\\\\mathfrak {h}\\\\)</span>, we classify all <span>\\\\(\\\\mathfrak {g}\\\\otimes \\\\mathcal {R}\\\\)</span>-modules on <span>\\\\(U(\\\\mathfrak {h})\\\\)</span> such that <span>\\\\(\\\\mathfrak {h}\\\\)</span> as a subalgebra of <span>\\\\(\\\\mathfrak {g}\\\\otimes \\\\mathcal {R}\\\\)</span>, acts on <span>\\\\(U(\\\\mathfrak {h})\\\\)</span> by the multiplication. We construct these modules explicitly and study their module structures.</p>\",\"PeriodicalId\":10575,\"journal\":{\"name\":\"Communications in Mathematics and Statistics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematics and Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40304-023-00356-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40304-023-00356-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于任何在\(\mathbb {C}\)上有限生成的单元交换关联代数\(\mathcal {R}\)和任何复杂的有限维简单李代数\(\mathfrak {g}\),都有一个固定的笛卡尔子代数\(\mathfrak {h}\)、我们将所有关于\(U(\mathfrak {h})\的\(\mathfrak {g}\otimes\mathcal{R}\)模块分类,使得\(\mathfrak {h}\)作为\(\mathfrak {g}\otimes\mathcal{R}\)的子代数,通过乘法作用于\(U(\mathfrak {h})\。我们明确地构造了这些模块,并研究了它们的模块结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Class of Polynomial Modules over Map Lie Algebras

For any finitely generated unital commutative associative algebra \(\mathcal {R}\) over \(\mathbb {C}\) and any complex finite-dimensional simple Lie algebra \(\mathfrak {g}\) with a fixed Cartan subalgebra \(\mathfrak {h}\), we classify all \(\mathfrak {g}\otimes \mathcal {R}\)-modules on \(U(\mathfrak {h})\) such that \(\mathfrak {h}\) as a subalgebra of \(\mathfrak {g}\otimes \mathcal {R}\), acts on \(U(\mathfrak {h})\) by the multiplication. We construct these modules explicitly and study their module structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematics and Statistics
Communications in Mathematics and Statistics Mathematics-Statistics and Probability
CiteScore
1.80
自引率
0.00%
发文量
36
期刊介绍: Communications in Mathematics and Statistics is an international journal published by Springer-Verlag in collaboration with the School of Mathematical Sciences, University of Science and Technology of China (USTC). The journal will be committed to publish high level original peer reviewed research papers in various areas of mathematical sciences, including pure mathematics, applied mathematics, computational mathematics, and probability and statistics. Typically one volume is published each year, and each volume consists of four issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信