{"title":"利用神经网络生成望远镜阵列实验的地面探测器读数并搜索异常现象","authors":"R. R. Fitagdinov, I. V. Kharuk","doi":"10.3103/S0027134923070068","DOIUrl":null,"url":null,"abstract":"<p>We report on the development of neural networks for generating readings from Telescope Array’s surface detectors with the largest registered integral signal. To achieve this goal, we implemented generative Wasserstein adversarial networks with the gradient penalty. The data used to train the model was generated using the Monte Carlo method. We obtained visually similar data which are consistent with the physics of the underlying processes. The anomaly search method can be employed to identify discrepancies between real and simulated data, as well as to introduce a quantitative measure of similarity between the real detector readings and those generated by the neural network’s readings.</p>","PeriodicalId":711,"journal":{"name":"Moscow University Physics Bulletin","volume":"78 1 supplement","pages":"S59 - S63"},"PeriodicalIF":0.4000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation of the Ground Detector Readings of the Telescope Array Experiment and the Search for Anomalies Using Neural Networks\",\"authors\":\"R. R. Fitagdinov, I. V. Kharuk\",\"doi\":\"10.3103/S0027134923070068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We report on the development of neural networks for generating readings from Telescope Array’s surface detectors with the largest registered integral signal. To achieve this goal, we implemented generative Wasserstein adversarial networks with the gradient penalty. The data used to train the model was generated using the Monte Carlo method. We obtained visually similar data which are consistent with the physics of the underlying processes. The anomaly search method can be employed to identify discrepancies between real and simulated data, as well as to introduce a quantitative measure of similarity between the real detector readings and those generated by the neural network’s readings.</p>\",\"PeriodicalId\":711,\"journal\":{\"name\":\"Moscow University Physics Bulletin\",\"volume\":\"78 1 supplement\",\"pages\":\"S59 - S63\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Physics Bulletin\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0027134923070068\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Physics Bulletin","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S0027134923070068","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Generation of the Ground Detector Readings of the Telescope Array Experiment and the Search for Anomalies Using Neural Networks
We report on the development of neural networks for generating readings from Telescope Array’s surface detectors with the largest registered integral signal. To achieve this goal, we implemented generative Wasserstein adversarial networks with the gradient penalty. The data used to train the model was generated using the Monte Carlo method. We obtained visually similar data which are consistent with the physics of the underlying processes. The anomaly search method can be employed to identify discrepancies between real and simulated data, as well as to introduce a quantitative measure of similarity between the real detector readings and those generated by the neural network’s readings.
期刊介绍:
Moscow University Physics Bulletin publishes original papers (reviews, articles, and brief communications) in the following fields of experimental and theoretical physics: theoretical and mathematical physics; physics of nuclei and elementary particles; radiophysics, electronics, acoustics; optics and spectroscopy; laser physics; condensed matter physics; chemical physics, physical kinetics, and plasma physics; biophysics and medical physics; astronomy, astrophysics, and cosmology; physics of the Earth’s, atmosphere, and hydrosphere.