{"title":"矩阵对的联合对角线化与不精确的内部迭代","authors":"Haibo Li","doi":"10.1137/22m1541083","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 1, Page 232-259, March 2024. <br/> Abstract. The joint bidiagonalization (JBD) process iteratively reduces a matrix pair [math] to two bidiagonal forms simultaneously, which can be used for computing a partial generalized singular value decomposition (GSVD) of [math]. The process has a nested inner-outer iteration structure, where the inner iteration usually cannot be computed exactly. In this paper, we study the inaccurately computed inner iterations of JBD by first investigating the influence of computational error of the inner iteration on the outer iteration, and then proposing a reorthogonalized JBD (rJBD) process to keep orthogonality of a part of Lanczos vectors. An error analysis of the rJBD is carried out to build up connections with Lanczos bidiagonalizations. The results are then used to investigate convergence and accuracy of the rJBD based GSVD computation. It is shown that the accuracy of computed GSVD components depends on the computing accuracy of inner iterations and the condition number of [math], while the convergence rate is not affected very much. For practical JBD based GSVD computations, our results can provide a guideline for choosing a proper computing accuracy of inner iterations in order to obtain approximate GSVD components with a desired accuracy. Numerical experiments are made to confirm our theoretical results.","PeriodicalId":49538,"journal":{"name":"SIAM Journal on Matrix Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Joint Bidiagonalization of a Matrix Pair with Inaccurate Inner Iterations\",\"authors\":\"Haibo Li\",\"doi\":\"10.1137/22m1541083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 1, Page 232-259, March 2024. <br/> Abstract. The joint bidiagonalization (JBD) process iteratively reduces a matrix pair [math] to two bidiagonal forms simultaneously, which can be used for computing a partial generalized singular value decomposition (GSVD) of [math]. The process has a nested inner-outer iteration structure, where the inner iteration usually cannot be computed exactly. In this paper, we study the inaccurately computed inner iterations of JBD by first investigating the influence of computational error of the inner iteration on the outer iteration, and then proposing a reorthogonalized JBD (rJBD) process to keep orthogonality of a part of Lanczos vectors. An error analysis of the rJBD is carried out to build up connections with Lanczos bidiagonalizations. The results are then used to investigate convergence and accuracy of the rJBD based GSVD computation. It is shown that the accuracy of computed GSVD components depends on the computing accuracy of inner iterations and the condition number of [math], while the convergence rate is not affected very much. For practical JBD based GSVD computations, our results can provide a guideline for choosing a proper computing accuracy of inner iterations in order to obtain approximate GSVD components with a desired accuracy. Numerical experiments are made to confirm our theoretical results.\",\"PeriodicalId\":49538,\"journal\":{\"name\":\"SIAM Journal on Matrix Analysis and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Matrix Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1541083\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Matrix Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1541083","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The Joint Bidiagonalization of a Matrix Pair with Inaccurate Inner Iterations
SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 1, Page 232-259, March 2024. Abstract. The joint bidiagonalization (JBD) process iteratively reduces a matrix pair [math] to two bidiagonal forms simultaneously, which can be used for computing a partial generalized singular value decomposition (GSVD) of [math]. The process has a nested inner-outer iteration structure, where the inner iteration usually cannot be computed exactly. In this paper, we study the inaccurately computed inner iterations of JBD by first investigating the influence of computational error of the inner iteration on the outer iteration, and then proposing a reorthogonalized JBD (rJBD) process to keep orthogonality of a part of Lanczos vectors. An error analysis of the rJBD is carried out to build up connections with Lanczos bidiagonalizations. The results are then used to investigate convergence and accuracy of the rJBD based GSVD computation. It is shown that the accuracy of computed GSVD components depends on the computing accuracy of inner iterations and the condition number of [math], while the convergence rate is not affected very much. For practical JBD based GSVD computations, our results can provide a guideline for choosing a proper computing accuracy of inner iterations in order to obtain approximate GSVD components with a desired accuracy. Numerical experiments are made to confirm our theoretical results.
期刊介绍:
The SIAM Journal on Matrix Analysis and Applications contains research articles in matrix analysis and its applications and papers of interest to the numerical linear algebra community. Applications include such areas as signal processing, systems and control theory, statistics, Markov chains, and mathematical biology. Also contains papers that are of a theoretical nature but have a possible impact on applications.