{"title":"对 Grevillea robusta 完整叶绿体基因组的分析","authors":"Jiaxi Li, Guanghua Liu, Jie Yu, Yubing Yang","doi":"10.1007/s40415-023-00976-8","DOIUrl":null,"url":null,"abstract":"<p><i>Grevillea robusta</i> is an important plant in Proteaceae, decoding and understanding the chloroplast genome of <i>G. robusta</i> is of great theoretical significance and practical value to the genetic diversity and phylogenetic relationships of Proteaceae<i>.</i> In this work, the chloroplast genome of <i>G. robusta</i> was sequenced, characterized, and compared to the other Proteaceae species to provide chloroplast genetic resources and because the information on chloroplast genes is scarce in the Proteaceae, we also examined the affinities between <i>G. robusta</i> and species of various families within Proteales to determine <i>G. robusta’s</i> phylogenetic position<i>.</i> Based on the illumina sequencing data of <i>G. robusta</i>, the sequencing results were assembled and annotated utilizing the software tools GetOrganelle and CPGAVAS2. The chloroplast genome data for the genera <i>Macadamia</i>, <i>Helicia</i>, and <i>Protea</i> were obtained from the NCBI database. Subsequently, the chloroplast genomes of four genera within the Proteaceae family were subjected to analysis using various programs including MISA, REPuter, IRscope, and IQtree. The chloroplast genome of <i>G. robusta</i> was 158,642 bp in length and consists of 129 genes, including 84 protein-coding genes, 37 tRNA genes and 8 rRNA genes. Fifty-six simple repeat sequences were obtained from <i>G. robusta</i>, of which single-nucleotide repeats were the most (66.07%) and the six nucleotide repeats were the least (1).Simultaneously, the chloroplast genome of <i>G. robusta</i> exhibited the presence of 34 repeats, primarily consisting of palindrome repeats (16). The inverted repeat (IR) region of <i>G. robusta</i> did not undergo a significant contraction/expansion event, in contrast to the notable contraction observed in <i>Protea kilimandscharica</i>. Analysis of gene selection pressure indicated positive selection signals in the <i>ycf1</i> genes. Furthermore, examination of RNA editing sites revealed the occurrence of 148 RNA editing sites within the protein-coding genes of the chloroplast genome of <i>G. robusta</i>, with the majority consisting of C/U editing, accounting for 54.73% of the total. Phylogenetic analysis confirmed that <i>G. robusta</i> belongs to Proteaceae, and grouped with <i>Helicia</i> and <i>Macadamia</i>, with a support value of 100%. The chloroplast genome of <i>G. robusta</i> was assembled successfully, which is closely related to the chloroplast genomes of <i>Helicia</i> and <i>Macadamia</i>, and belongs to the same clade as Proteaceae. The results of this study laid a foundation for understanding the systematic evolution of Proteaceae plants and provide rich data to support the development of molecular biological information, such as molecular markers.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis on the complete chloroplast genome of Grevillea robusta\",\"authors\":\"Jiaxi Li, Guanghua Liu, Jie Yu, Yubing Yang\",\"doi\":\"10.1007/s40415-023-00976-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Grevillea robusta</i> is an important plant in Proteaceae, decoding and understanding the chloroplast genome of <i>G. robusta</i> is of great theoretical significance and practical value to the genetic diversity and phylogenetic relationships of Proteaceae<i>.</i> In this work, the chloroplast genome of <i>G. robusta</i> was sequenced, characterized, and compared to the other Proteaceae species to provide chloroplast genetic resources and because the information on chloroplast genes is scarce in the Proteaceae, we also examined the affinities between <i>G. robusta</i> and species of various families within Proteales to determine <i>G. robusta’s</i> phylogenetic position<i>.</i> Based on the illumina sequencing data of <i>G. robusta</i>, the sequencing results were assembled and annotated utilizing the software tools GetOrganelle and CPGAVAS2. The chloroplast genome data for the genera <i>Macadamia</i>, <i>Helicia</i>, and <i>Protea</i> were obtained from the NCBI database. Subsequently, the chloroplast genomes of four genera within the Proteaceae family were subjected to analysis using various programs including MISA, REPuter, IRscope, and IQtree. The chloroplast genome of <i>G. robusta</i> was 158,642 bp in length and consists of 129 genes, including 84 protein-coding genes, 37 tRNA genes and 8 rRNA genes. Fifty-six simple repeat sequences were obtained from <i>G. robusta</i>, of which single-nucleotide repeats were the most (66.07%) and the six nucleotide repeats were the least (1).Simultaneously, the chloroplast genome of <i>G. robusta</i> exhibited the presence of 34 repeats, primarily consisting of palindrome repeats (16). The inverted repeat (IR) region of <i>G. robusta</i> did not undergo a significant contraction/expansion event, in contrast to the notable contraction observed in <i>Protea kilimandscharica</i>. Analysis of gene selection pressure indicated positive selection signals in the <i>ycf1</i> genes. Furthermore, examination of RNA editing sites revealed the occurrence of 148 RNA editing sites within the protein-coding genes of the chloroplast genome of <i>G. robusta</i>, with the majority consisting of C/U editing, accounting for 54.73% of the total. Phylogenetic analysis confirmed that <i>G. robusta</i> belongs to Proteaceae, and grouped with <i>Helicia</i> and <i>Macadamia</i>, with a support value of 100%. The chloroplast genome of <i>G. robusta</i> was assembled successfully, which is closely related to the chloroplast genomes of <i>Helicia</i> and <i>Macadamia</i>, and belongs to the same clade as Proteaceae. The results of this study laid a foundation for understanding the systematic evolution of Proteaceae plants and provide rich data to support the development of molecular biological information, such as molecular markers.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s40415-023-00976-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s40415-023-00976-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Analysis on the complete chloroplast genome of Grevillea robusta
Grevillea robusta is an important plant in Proteaceae, decoding and understanding the chloroplast genome of G. robusta is of great theoretical significance and practical value to the genetic diversity and phylogenetic relationships of Proteaceae. In this work, the chloroplast genome of G. robusta was sequenced, characterized, and compared to the other Proteaceae species to provide chloroplast genetic resources and because the information on chloroplast genes is scarce in the Proteaceae, we also examined the affinities between G. robusta and species of various families within Proteales to determine G. robusta’s phylogenetic position. Based on the illumina sequencing data of G. robusta, the sequencing results were assembled and annotated utilizing the software tools GetOrganelle and CPGAVAS2. The chloroplast genome data for the genera Macadamia, Helicia, and Protea were obtained from the NCBI database. Subsequently, the chloroplast genomes of four genera within the Proteaceae family were subjected to analysis using various programs including MISA, REPuter, IRscope, and IQtree. The chloroplast genome of G. robusta was 158,642 bp in length and consists of 129 genes, including 84 protein-coding genes, 37 tRNA genes and 8 rRNA genes. Fifty-six simple repeat sequences were obtained from G. robusta, of which single-nucleotide repeats were the most (66.07%) and the six nucleotide repeats were the least (1).Simultaneously, the chloroplast genome of G. robusta exhibited the presence of 34 repeats, primarily consisting of palindrome repeats (16). The inverted repeat (IR) region of G. robusta did not undergo a significant contraction/expansion event, in contrast to the notable contraction observed in Protea kilimandscharica. Analysis of gene selection pressure indicated positive selection signals in the ycf1 genes. Furthermore, examination of RNA editing sites revealed the occurrence of 148 RNA editing sites within the protein-coding genes of the chloroplast genome of G. robusta, with the majority consisting of C/U editing, accounting for 54.73% of the total. Phylogenetic analysis confirmed that G. robusta belongs to Proteaceae, and grouped with Helicia and Macadamia, with a support value of 100%. The chloroplast genome of G. robusta was assembled successfully, which is closely related to the chloroplast genomes of Helicia and Macadamia, and belongs to the same clade as Proteaceae. The results of this study laid a foundation for understanding the systematic evolution of Proteaceae plants and provide rich data to support the development of molecular biological information, such as molecular markers.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.