{"title":"癌症疗法与克隆造血的十字路口","authors":"Abhay Singh , Suresh Balasubramanian","doi":"10.1053/j.seminhematol.2024.01.006","DOIUrl":null,"url":null,"abstract":"<div><p>The intricate interplay between Clonal Hematopoiesis (CH) and the repercussions of cancer therapies has garnered significant research focus in recent years. Previously perceived as an age-related phenomenon, CH is now closely linked to inflammation (“Inflammaging”) and cancer, impacting leukemogenesis, cancer progression, and treatment responses. This review explores the complex interplay between CH and diverse cancer therapies, including chemotherapy, targeted treatments, radiation, stem cell transplants, CAR-T cell therapy, and immunotherapy, like immune checkpoint inhibitors. Notably, knowledge about post-chemotherapy CH mutation/acquisition has evolved from a <em>de novo</em> incident to more of a clonal selection process. Chemotherapy and radiation exposure, whether therapeutic or environmental, increases CH risk, particularly in genes like <em>TP53</em> and <em>PPM1D</em>. Environmental toxins, especially in high-risk environments like post-disaster sites or space exploration, are associated with CH. CH affects clinical outcomes in stem cell transplant scenarios, including engraftment, survival, and t-MN development. The presence of CH also alters CAR-T cell therapy responses and impacts the efficacy and toxicity of immunotherapies. Furthermore, specific mutations like <em>DNMT3A</em> and <em>TET2</em> thrive under inflammatory stress, influencing therapy outcomes and justifying the ongoing tailored interventions in clinical trials. This review underscores the critical need to integrate CH analysis into personalized medicine, enhancing risk assessments and refining treatment strategies. As we progress, multidisciplinary collaboration and comprehensive studies are imperative. Understanding CH's impact, especially concerning genotoxic stressors, will inform screening, surveillance, and early detection strategies, decreasing the risk of therapy-related myeloid neoplasms and revolutionizing cancer treatment paradigms.</p></div>","PeriodicalId":21684,"journal":{"name":"Seminars in hematology","volume":"61 1","pages":"Pages 16-21"},"PeriodicalIF":5.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0037196324000076/pdfft?md5=9ebeaac0cb20f6a2472ddf443fbcff2c&pid=1-s2.0-S0037196324000076-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The crossroads of cancer therapies and clonal hematopoiesis\",\"authors\":\"Abhay Singh , Suresh Balasubramanian\",\"doi\":\"10.1053/j.seminhematol.2024.01.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The intricate interplay between Clonal Hematopoiesis (CH) and the repercussions of cancer therapies has garnered significant research focus in recent years. Previously perceived as an age-related phenomenon, CH is now closely linked to inflammation (“Inflammaging”) and cancer, impacting leukemogenesis, cancer progression, and treatment responses. This review explores the complex interplay between CH and diverse cancer therapies, including chemotherapy, targeted treatments, radiation, stem cell transplants, CAR-T cell therapy, and immunotherapy, like immune checkpoint inhibitors. Notably, knowledge about post-chemotherapy CH mutation/acquisition has evolved from a <em>de novo</em> incident to more of a clonal selection process. Chemotherapy and radiation exposure, whether therapeutic or environmental, increases CH risk, particularly in genes like <em>TP53</em> and <em>PPM1D</em>. Environmental toxins, especially in high-risk environments like post-disaster sites or space exploration, are associated with CH. CH affects clinical outcomes in stem cell transplant scenarios, including engraftment, survival, and t-MN development. The presence of CH also alters CAR-T cell therapy responses and impacts the efficacy and toxicity of immunotherapies. Furthermore, specific mutations like <em>DNMT3A</em> and <em>TET2</em> thrive under inflammatory stress, influencing therapy outcomes and justifying the ongoing tailored interventions in clinical trials. This review underscores the critical need to integrate CH analysis into personalized medicine, enhancing risk assessments and refining treatment strategies. As we progress, multidisciplinary collaboration and comprehensive studies are imperative. Understanding CH's impact, especially concerning genotoxic stressors, will inform screening, surveillance, and early detection strategies, decreasing the risk of therapy-related myeloid neoplasms and revolutionizing cancer treatment paradigms.</p></div>\",\"PeriodicalId\":21684,\"journal\":{\"name\":\"Seminars in hematology\",\"volume\":\"61 1\",\"pages\":\"Pages 16-21\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0037196324000076/pdfft?md5=9ebeaac0cb20f6a2472ddf443fbcff2c&pid=1-s2.0-S0037196324000076-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in hematology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0037196324000076\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in hematology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0037196324000076","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
The crossroads of cancer therapies and clonal hematopoiesis
The intricate interplay between Clonal Hematopoiesis (CH) and the repercussions of cancer therapies has garnered significant research focus in recent years. Previously perceived as an age-related phenomenon, CH is now closely linked to inflammation (“Inflammaging”) and cancer, impacting leukemogenesis, cancer progression, and treatment responses. This review explores the complex interplay between CH and diverse cancer therapies, including chemotherapy, targeted treatments, radiation, stem cell transplants, CAR-T cell therapy, and immunotherapy, like immune checkpoint inhibitors. Notably, knowledge about post-chemotherapy CH mutation/acquisition has evolved from a de novo incident to more of a clonal selection process. Chemotherapy and radiation exposure, whether therapeutic or environmental, increases CH risk, particularly in genes like TP53 and PPM1D. Environmental toxins, especially in high-risk environments like post-disaster sites or space exploration, are associated with CH. CH affects clinical outcomes in stem cell transplant scenarios, including engraftment, survival, and t-MN development. The presence of CH also alters CAR-T cell therapy responses and impacts the efficacy and toxicity of immunotherapies. Furthermore, specific mutations like DNMT3A and TET2 thrive under inflammatory stress, influencing therapy outcomes and justifying the ongoing tailored interventions in clinical trials. This review underscores the critical need to integrate CH analysis into personalized medicine, enhancing risk assessments and refining treatment strategies. As we progress, multidisciplinary collaboration and comprehensive studies are imperative. Understanding CH's impact, especially concerning genotoxic stressors, will inform screening, surveillance, and early detection strategies, decreasing the risk of therapy-related myeloid neoplasms and revolutionizing cancer treatment paradigms.
期刊介绍:
Seminars in Hematology aims to present subjects of current importance in clinical hematology, including related areas of oncology, hematopathology, and blood banking. The journal''s unique issue structure allows for a multi-faceted overview of a single topic via a curated selection of review articles, while also offering a variety of articles that present dynamic and front-line material immediately influencing the field. Seminars in Hematology is devoted to making the important and current work accessible, comprehensible, and valuable to the practicing physician, young investigator, clinical practitioners, and internists/paediatricians with strong interests in blood diseases. Seminars in Hematology publishes original research, reviews, short communications and mini- reviews.