机器学习方法在贝加尔-GVD 中的应用:背景噪声剔除和中微子诱发事件的选择

IF 0.4 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY
A. V. Matseiko, I. V. Kharuk
{"title":"机器学习方法在贝加尔-GVD 中的应用:背景噪声剔除和中微子诱发事件的选择","authors":"A. V. Matseiko,&nbsp;I. V. Kharuk","doi":"10.3103/S0027134923070226","DOIUrl":null,"url":null,"abstract":"<p>Baikal-GVD is a large (<span>\\(\\sim\\)</span>1 km<span>\\({}^{3}\\)</span>) underwater neutrino telescope located in Lake Baikal, Russia. In this report, we present two machine learning techniques developed for its data analysis. First, we introduce a neural network for an efficient rejection of noise hits, emerging due to natural water luminescence. Second, we develop a neural network for distinguishing muon- and neutrino-induced events. By choosing an appropriate classification threshold, we preserve <span>\\(90\\%\\)</span> of neutrino-induced events, while muon-induced events are suppressed by a factor of <span>\\(10^{-6}\\)</span>. Both of the developed neural networks employ the causal structure of events and surpass the precision of standard algorithmic approaches.</p>","PeriodicalId":711,"journal":{"name":"Moscow University Physics Bulletin","volume":"78 1 supplement","pages":"S71 - S79"},"PeriodicalIF":0.4000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Machine Learning Methods in Baikal-GVD: Background Noise Rejection and Selection of Neutrino-Induced Events\",\"authors\":\"A. V. Matseiko,&nbsp;I. V. Kharuk\",\"doi\":\"10.3103/S0027134923070226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Baikal-GVD is a large (<span>\\\\(\\\\sim\\\\)</span>1 km<span>\\\\({}^{3}\\\\)</span>) underwater neutrino telescope located in Lake Baikal, Russia. In this report, we present two machine learning techniques developed for its data analysis. First, we introduce a neural network for an efficient rejection of noise hits, emerging due to natural water luminescence. Second, we develop a neural network for distinguishing muon- and neutrino-induced events. By choosing an appropriate classification threshold, we preserve <span>\\\\(90\\\\%\\\\)</span> of neutrino-induced events, while muon-induced events are suppressed by a factor of <span>\\\\(10^{-6}\\\\)</span>. Both of the developed neural networks employ the causal structure of events and surpass the precision of standard algorithmic approaches.</p>\",\"PeriodicalId\":711,\"journal\":{\"name\":\"Moscow University Physics Bulletin\",\"volume\":\"78 1 supplement\",\"pages\":\"S71 - S79\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Physics Bulletin\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0027134923070226\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Physics Bulletin","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S0027134923070226","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要贝加尔-GVD是位于俄罗斯贝加尔湖的一个大型(\(\sim\)1 km\({}^{3}\) )水下中微子望远镜。在本报告中,我们介绍了为其数据分析而开发的两种机器学习技术。首先,我们引入了一个神经网络,用于有效地剔除因自然水发光而产生的噪声。其次,我们开发了一种用于区分μ介子和中微子诱发事件的神经网络。通过选择一个合适的分类阈值,我们保留了(90%)中微子诱导事件,而μ介子诱导事件则被抑制了(10^{-6}\)倍。所开发的两种神经网络都采用了事件的因果结构,并超越了标准算法方法的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Application of Machine Learning Methods in Baikal-GVD: Background Noise Rejection and Selection of Neutrino-Induced Events

Application of Machine Learning Methods in Baikal-GVD: Background Noise Rejection and Selection of Neutrino-Induced Events

Application of Machine Learning Methods in Baikal-GVD: Background Noise Rejection and Selection of Neutrino-Induced Events

Baikal-GVD is a large (\(\sim\)1 km\({}^{3}\)) underwater neutrino telescope located in Lake Baikal, Russia. In this report, we present two machine learning techniques developed for its data analysis. First, we introduce a neural network for an efficient rejection of noise hits, emerging due to natural water luminescence. Second, we develop a neural network for distinguishing muon- and neutrino-induced events. By choosing an appropriate classification threshold, we preserve \(90\%\) of neutrino-induced events, while muon-induced events are suppressed by a factor of \(10^{-6}\). Both of the developed neural networks employ the causal structure of events and surpass the precision of standard algorithmic approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moscow University Physics Bulletin
Moscow University Physics Bulletin PHYSICS, MULTIDISCIPLINARY-
CiteScore
0.70
自引率
0.00%
发文量
129
审稿时长
6-12 weeks
期刊介绍: Moscow University Physics Bulletin publishes original papers (reviews, articles, and brief communications) in the following fields of experimental and theoretical physics: theoretical and mathematical physics; physics of nuclei and elementary particles; radiophysics, electronics, acoustics; optics and spectroscopy; laser physics; condensed matter physics; chemical physics, physical kinetics, and plasma physics; biophysics and medical physics; astronomy, astrophysics, and cosmology; physics of the Earth’s, atmosphere, and hydrosphere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信