{"title":"非扩展映射的随机定点迭代:收敛性与误差边界","authors":"Mario Bravo, Roberto Cominetti","doi":"10.1137/22m1515550","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Control and Optimization, Volume 62, Issue 1, Page 191-219, February 2024. <br/> Abstract. We study a stochastically perturbed version of the well-known Krasnoselskii–Mann iteration for computing fixed points of nonexpansive maps in finite dimensional normed spaces. We discuss sufficient conditions on the stochastic noise and stepsizes that guarantee almost sure convergence of the iterates towards a fixed point and derive nonasymptotic error bounds and convergence rates for the fixed-point residuals. Our main results concern the case of a martingale difference noise with variances that can possibly grow unbounded. This supports an application to reinforcement learning for average reward Markov decision processes, for which we establish convergence and asymptotic rates. We also analyze in depth the case where the noise has uniformly bounded variance, obtaining error bounds with explicit computable constants.","PeriodicalId":49531,"journal":{"name":"SIAM Journal on Control and Optimization","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic Fixed-Point Iterations for Nonexpansive Maps: Convergence and Error Bounds\",\"authors\":\"Mario Bravo, Roberto Cominetti\",\"doi\":\"10.1137/22m1515550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Control and Optimization, Volume 62, Issue 1, Page 191-219, February 2024. <br/> Abstract. We study a stochastically perturbed version of the well-known Krasnoselskii–Mann iteration for computing fixed points of nonexpansive maps in finite dimensional normed spaces. We discuss sufficient conditions on the stochastic noise and stepsizes that guarantee almost sure convergence of the iterates towards a fixed point and derive nonasymptotic error bounds and convergence rates for the fixed-point residuals. Our main results concern the case of a martingale difference noise with variances that can possibly grow unbounded. This supports an application to reinforcement learning for average reward Markov decision processes, for which we establish convergence and asymptotic rates. We also analyze in depth the case where the noise has uniformly bounded variance, obtaining error bounds with explicit computable constants.\",\"PeriodicalId\":49531,\"journal\":{\"name\":\"SIAM Journal on Control and Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Control and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1515550\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Control and Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1515550","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Stochastic Fixed-Point Iterations for Nonexpansive Maps: Convergence and Error Bounds
SIAM Journal on Control and Optimization, Volume 62, Issue 1, Page 191-219, February 2024. Abstract. We study a stochastically perturbed version of the well-known Krasnoselskii–Mann iteration for computing fixed points of nonexpansive maps in finite dimensional normed spaces. We discuss sufficient conditions on the stochastic noise and stepsizes that guarantee almost sure convergence of the iterates towards a fixed point and derive nonasymptotic error bounds and convergence rates for the fixed-point residuals. Our main results concern the case of a martingale difference noise with variances that can possibly grow unbounded. This supports an application to reinforcement learning for average reward Markov decision processes, for which we establish convergence and asymptotic rates. We also analyze in depth the case where the noise has uniformly bounded variance, obtaining error bounds with explicit computable constants.
期刊介绍:
SIAM Journal on Control and Optimization (SICON) publishes original research articles on the mathematics and applications of control theory and certain parts of optimization theory. Papers considered for publication must be significant at both the mathematical level and the level of applications or potential applications. Papers containing mostly routine mathematics or those with no discernible connection to control and systems theory or optimization will not be considered for publication. From time to time, the journal will also publish authoritative surveys of important subject areas in control theory and optimization whose level of maturity permits a clear and unified exposition.
The broad areas mentioned above are intended to encompass a wide range of mathematical techniques and scientific, engineering, economic, and industrial applications. These include stochastic and deterministic methods in control, estimation, and identification of systems; modeling and realization of complex control systems; the numerical analysis and related computational methodology of control processes and allied issues; and the development of mathematical theories and techniques that give new insights into old problems or provide the basis for further progress in control theory and optimization. Within the field of optimization, the journal focuses on the parts that are relevant to dynamic and control systems. Contributions to numerical methodology are also welcome in accordance with these aims, especially as related to large-scale problems and decomposition as well as to fundamental questions of convergence and approximation.