{"title":"优先食人是有营养多态捕食者的群内捕食系统的关键稳定机制","authors":"Clara A. Woodie, Kurt E. Anderson","doi":"10.1007/s12080-024-00575-7","DOIUrl":null,"url":null,"abstract":"<p>Theory predicts intraguild predation (IGP) to be unstable despite its ubiquity in nature, prompting exploration of stabilizing mechanisms of IGP. One of the many ways IGP manifests is through inducible trophic polymorphisms in the intraguild (IG) predator, where a resource-eating predator morph competes with the intraguild (IG) prey for the shared resource while a top predator morph consumes the IG prey. Cannibalism is common in this type of system due to the top predator morph’s specialization on the trophic level below it, which includes the resource-eating predator morph. Here, we explore the consequences of inducible trophic polymorphisms in cannibal predators for IGP stability using an IGP model with and without cannibalism. We employ linear stability analysis and identify regions of coexistence based on the top predator morph’s preference for conspecifics vs. heterospecifics and the IG prey’s competitive ability relative to the resource-eating morph. Our findings reveal that preferential cannibalism (i.e., the preferential consumption of conspecifics) stabilizes the system when the IG prey and resource-eating morph have similar competitive abilities for the shared resource. Though original IGP theory finds that the IG prey must be a superior resource competitor as a general criterion for coexistence, this is not typically the case when the predator has an inducible trophic polymorphism and the resource-eating morph is specialized in resource acquisition. Preferential cannibalism may therefore be a key stabilizing mechanism in IGP systems with a cannibalistic, trophic polymorphic IG predators, providing further insight into what general mechanisms stabilize the pervasive IGP interaction.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preferential cannibalism as a key stabilizing mechanism of intraguild predation systems with trophic polymorphic predators\",\"authors\":\"Clara A. Woodie, Kurt E. Anderson\",\"doi\":\"10.1007/s12080-024-00575-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Theory predicts intraguild predation (IGP) to be unstable despite its ubiquity in nature, prompting exploration of stabilizing mechanisms of IGP. One of the many ways IGP manifests is through inducible trophic polymorphisms in the intraguild (IG) predator, where a resource-eating predator morph competes with the intraguild (IG) prey for the shared resource while a top predator morph consumes the IG prey. Cannibalism is common in this type of system due to the top predator morph’s specialization on the trophic level below it, which includes the resource-eating predator morph. Here, we explore the consequences of inducible trophic polymorphisms in cannibal predators for IGP stability using an IGP model with and without cannibalism. We employ linear stability analysis and identify regions of coexistence based on the top predator morph’s preference for conspecifics vs. heterospecifics and the IG prey’s competitive ability relative to the resource-eating morph. Our findings reveal that preferential cannibalism (i.e., the preferential consumption of conspecifics) stabilizes the system when the IG prey and resource-eating morph have similar competitive abilities for the shared resource. Though original IGP theory finds that the IG prey must be a superior resource competitor as a general criterion for coexistence, this is not typically the case when the predator has an inducible trophic polymorphism and the resource-eating morph is specialized in resource acquisition. Preferential cannibalism may therefore be a key stabilizing mechanism in IGP systems with a cannibalistic, trophic polymorphic IG predators, providing further insight into what general mechanisms stabilize the pervasive IGP interaction.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s12080-024-00575-7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s12080-024-00575-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Preferential cannibalism as a key stabilizing mechanism of intraguild predation systems with trophic polymorphic predators
Theory predicts intraguild predation (IGP) to be unstable despite its ubiquity in nature, prompting exploration of stabilizing mechanisms of IGP. One of the many ways IGP manifests is through inducible trophic polymorphisms in the intraguild (IG) predator, where a resource-eating predator morph competes with the intraguild (IG) prey for the shared resource while a top predator morph consumes the IG prey. Cannibalism is common in this type of system due to the top predator morph’s specialization on the trophic level below it, which includes the resource-eating predator morph. Here, we explore the consequences of inducible trophic polymorphisms in cannibal predators for IGP stability using an IGP model with and without cannibalism. We employ linear stability analysis and identify regions of coexistence based on the top predator morph’s preference for conspecifics vs. heterospecifics and the IG prey’s competitive ability relative to the resource-eating morph. Our findings reveal that preferential cannibalism (i.e., the preferential consumption of conspecifics) stabilizes the system when the IG prey and resource-eating morph have similar competitive abilities for the shared resource. Though original IGP theory finds that the IG prey must be a superior resource competitor as a general criterion for coexistence, this is not typically the case when the predator has an inducible trophic polymorphism and the resource-eating morph is specialized in resource acquisition. Preferential cannibalism may therefore be a key stabilizing mechanism in IGP systems with a cannibalistic, trophic polymorphic IG predators, providing further insight into what general mechanisms stabilize the pervasive IGP interaction.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.