融合套索信号近似器错误变化点数量的渐近线

Pub Date : 2024-01-18 DOI:10.1007/s42952-023-00250-3
Donghyeon Yu, Johan Lim, Won Son
{"title":"融合套索信号近似器错误变化点数量的渐近线","authors":"Donghyeon Yu, Johan Lim, Won Son","doi":"10.1007/s42952-023-00250-3","DOIUrl":null,"url":null,"abstract":"<p>It is well-known that the fused lasso signal approximator (FLSA) is inconsistent in change point detection under the presence of staircase blocks in true mean values. The existing studies focus on modifying the FLSA model to remedy this inconsistency. However, the inconsistency of the FLSA does not severely degrade the performance in change point detection if the FLSA can identify all true change points and the estimated change points set is sufficiently close to the true change points set. In this study, we investigate some asymptotic properties of the FLSA under the assumption of the noise level <span>\\(\\sigma _n = o(n \\log n)\\)</span>. To be specific, we show that all the falsely segmented blocks are sub-blocks of true staircase blocks if the noise level is sufficiently low and a tuning parameter is chosen appropriately. In addition, each false change point of the optimal FLSA estimate can be associated with a vertex of a concave majorant or a convex minorant of a discrete Brownian bridge. Based on these results, we derive an asymptotic distribution of the number of false change points and provide numerical examples supporting the theoretical results.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic of the number of false change points of the fused lasso signal approximator\",\"authors\":\"Donghyeon Yu, Johan Lim, Won Son\",\"doi\":\"10.1007/s42952-023-00250-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is well-known that the fused lasso signal approximator (FLSA) is inconsistent in change point detection under the presence of staircase blocks in true mean values. The existing studies focus on modifying the FLSA model to remedy this inconsistency. However, the inconsistency of the FLSA does not severely degrade the performance in change point detection if the FLSA can identify all true change points and the estimated change points set is sufficiently close to the true change points set. In this study, we investigate some asymptotic properties of the FLSA under the assumption of the noise level <span>\\\\(\\\\sigma _n = o(n \\\\log n)\\\\)</span>. To be specific, we show that all the falsely segmented blocks are sub-blocks of true staircase blocks if the noise level is sufficiently low and a tuning parameter is chosen appropriately. In addition, each false change point of the optimal FLSA estimate can be associated with a vertex of a concave majorant or a convex minorant of a discrete Brownian bridge. Based on these results, we derive an asymptotic distribution of the number of false change points and provide numerical examples supporting the theoretical results.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s42952-023-00250-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s42952-023-00250-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,在真实平均值存在阶梯块的情况下,融合套索信号近似器(FLSA)在变化点检测方面存在不一致性。现有研究的重点是修改 FLSA 模型,以弥补这种不一致性。然而,如果 FLSA 能够识别所有真实变化点,并且估计的变化点集与真实变化点集足够接近,那么 FLSA 的不一致性并不会严重降低变化点检测的性能。在本研究中,我们研究了 FLSA 在噪声水平 \(\sigma _n = o(n \log n)\)假设下的一些渐近特性。具体来说,我们证明了如果噪声水平足够低,并且适当地选择了一个调整参数,那么所有被错误分割的块都是真正的阶梯块的子块。此外,最佳 FLSA 估计值的每个假变化点都可以与离散布朗桥的凹大切或凸小切的顶点相关联。基于这些结果,我们推导出了错误变化点数量的渐近分布,并提供了支持理论结果的数值示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Asymptotic of the number of false change points of the fused lasso signal approximator

分享
查看原文
Asymptotic of the number of false change points of the fused lasso signal approximator

It is well-known that the fused lasso signal approximator (FLSA) is inconsistent in change point detection under the presence of staircase blocks in true mean values. The existing studies focus on modifying the FLSA model to remedy this inconsistency. However, the inconsistency of the FLSA does not severely degrade the performance in change point detection if the FLSA can identify all true change points and the estimated change points set is sufficiently close to the true change points set. In this study, we investigate some asymptotic properties of the FLSA under the assumption of the noise level \(\sigma _n = o(n \log n)\). To be specific, we show that all the falsely segmented blocks are sub-blocks of true staircase blocks if the noise level is sufficiently low and a tuning parameter is chosen appropriately. In addition, each false change point of the optimal FLSA estimate can be associated with a vertex of a concave majorant or a convex minorant of a discrete Brownian bridge. Based on these results, we derive an asymptotic distribution of the number of false change points and provide numerical examples supporting the theoretical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信