利用无监督机器学习算法识别银河卫星星系成员的可能性

IF 1.1 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Devika K. Divakar, Pallavi Saraf, Thirupathi Sivarani, Vijayakumar H. Doddamani
{"title":"利用无监督机器学习算法识别银河卫星星系成员的可能性","authors":"Devika K. Divakar,&nbsp;Pallavi Saraf,&nbsp;Thirupathi Sivarani,&nbsp;Vijayakumar H. Doddamani","doi":"10.1007/s12036-023-09990-4","DOIUrl":null,"url":null,"abstract":"<div><p>A detailed study of stellar populations in Milky Way (MW) satellite galaxies remains an observational challenge due to their faintness and fewer spectroscopically confirmed member stars. We use unsupervised machine learning methods to identify new members for nine nearby MW satellite galaxies using Gaia data release-3 (Gaia DR3) astrometry, the Dark Energy Survey (DES) and the DECam Local Volume Exploration Survey (DELVE) photometry. Two density-based clustering algorithms, DBSCAN and HDBSCAN, have been used in the four-dimensional astrometric parameter space (<span>\\(\\alpha _{2016}\\)</span>, <span>\\(\\delta _{2016}\\)</span>, <span>\\(\\mu _{\\alpha } \\cos \\delta \\)</span>, <span>\\(\\mu _\\delta \\)</span>) to identify member stars belonging to MW satellite galaxies. Our results indicate that we can recover more than 80% of the known spectroscopically confirmed members in most satellite galaxies and also reject 95–100% of spectroscopic non-members. We have also added many new members using this method. We compare our results with previous studies using photometric and astrometric data and discuss the suitability of density-based clustering methods for MW satellite galaxies.</p></div>","PeriodicalId":610,"journal":{"name":"Journal of Astrophysics and Astronomy","volume":"45 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Possibilities of identifying members from Milky Way satellite galaxies using unsupervised machine learning algorithms\",\"authors\":\"Devika K. Divakar,&nbsp;Pallavi Saraf,&nbsp;Thirupathi Sivarani,&nbsp;Vijayakumar H. Doddamani\",\"doi\":\"10.1007/s12036-023-09990-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A detailed study of stellar populations in Milky Way (MW) satellite galaxies remains an observational challenge due to their faintness and fewer spectroscopically confirmed member stars. We use unsupervised machine learning methods to identify new members for nine nearby MW satellite galaxies using Gaia data release-3 (Gaia DR3) astrometry, the Dark Energy Survey (DES) and the DECam Local Volume Exploration Survey (DELVE) photometry. Two density-based clustering algorithms, DBSCAN and HDBSCAN, have been used in the four-dimensional astrometric parameter space (<span>\\\\(\\\\alpha _{2016}\\\\)</span>, <span>\\\\(\\\\delta _{2016}\\\\)</span>, <span>\\\\(\\\\mu _{\\\\alpha } \\\\cos \\\\delta \\\\)</span>, <span>\\\\(\\\\mu _\\\\delta \\\\)</span>) to identify member stars belonging to MW satellite galaxies. Our results indicate that we can recover more than 80% of the known spectroscopically confirmed members in most satellite galaxies and also reject 95–100% of spectroscopic non-members. We have also added many new members using this method. We compare our results with previous studies using photometric and astrometric data and discuss the suitability of density-based clustering methods for MW satellite galaxies.</p></div>\",\"PeriodicalId\":610,\"journal\":{\"name\":\"Journal of Astrophysics and Astronomy\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Astrophysics and Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12036-023-09990-4\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astrophysics and Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s12036-023-09990-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

由于银河系(MW)卫星星系较暗且光谱证实的成员恒星较少,因此对其恒星群的详细研究仍然是一项观测挑战。我们使用无监督机器学习方法,利用盖亚数据发布-3(Gaia DR3)天体测量、暗能量巡天(DES)和DECam局域体积探测巡天(DELVE)光度测量,为九个附近的MW卫星星系识别新成员。在四维天体测量参数空间(\(\alpha _{2016}\), \(\delta _{2016}\), \(\mu _{\alpha } \cos \delta \), \(\mu _\delta \))中使用了两种基于密度的聚类算法--DBSCAN和HDBSCAN--来识别属于MW卫星星系的成员星。我们的研究结果表明,我们可以恢复大多数卫星星系中超过80%的已知光谱确认成员,同时也可以剔除95%-100%的光谱非成员。我们还利用这种方法增加了许多新成员。我们将我们的研究结果与之前使用测光和天体测量数据的研究结果进行了比较,并讨论了基于密度的聚类方法在MW卫星星系中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Possibilities of identifying members from Milky Way satellite galaxies using unsupervised machine learning algorithms

Possibilities of identifying members from Milky Way satellite galaxies using unsupervised machine learning algorithms

A detailed study of stellar populations in Milky Way (MW) satellite galaxies remains an observational challenge due to their faintness and fewer spectroscopically confirmed member stars. We use unsupervised machine learning methods to identify new members for nine nearby MW satellite galaxies using Gaia data release-3 (Gaia DR3) astrometry, the Dark Energy Survey (DES) and the DECam Local Volume Exploration Survey (DELVE) photometry. Two density-based clustering algorithms, DBSCAN and HDBSCAN, have been used in the four-dimensional astrometric parameter space (\(\alpha _{2016}\), \(\delta _{2016}\), \(\mu _{\alpha } \cos \delta \), \(\mu _\delta \)) to identify member stars belonging to MW satellite galaxies. Our results indicate that we can recover more than 80% of the known spectroscopically confirmed members in most satellite galaxies and also reject 95–100% of spectroscopic non-members. We have also added many new members using this method. We compare our results with previous studies using photometric and astrometric data and discuss the suitability of density-based clustering methods for MW satellite galaxies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Astrophysics and Astronomy
Journal of Astrophysics and Astronomy 地学天文-天文与天体物理
CiteScore
1.80
自引率
9.10%
发文量
84
审稿时长
>12 weeks
期刊介绍: The journal publishes original research papers on all aspects of astrophysics and astronomy, including instrumentation, laboratory astrophysics, and cosmology. Critical reviews of topical fields are also published. Articles submitted as letters will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信