周期为四的驯服对称代数

IF 0.5 4区 数学 Q3 MATHEMATICS
Karin Erdmann, Adam Hajduk, Adam Skowyrski
{"title":"周期为四的驯服对称代数","authors":"Karin Erdmann,&nbsp;Adam Hajduk,&nbsp;Adam Skowyrski","doi":"10.1007/s00013-023-01954-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we are concerned with the structure of tame symmetric algebras <span>\\(\\Lambda \\)</span> of period four (TSP4 algebras for short). For a tame algebra, the number of arrows starting or ending at a given vertex cannot be large. Here we will mostly focus on the case when the Gabriel quiver of <span>\\(\\Lambda \\)</span> is biserial, that is, there are at most two arrows ending and at most two arrows starting at each vertex. We present a range of properties (with relatively short proofs) which must hold for the Gabriel quiver of such an algebra. In particular, we show that triangles (and squares) appear naturally, so as for weighted surface algebras (Erdmann and Skowroński in J Algebra 505:490–558, 2018, J Algebra 544:170–227, 2020, J Algebra 569:875–889, 2021). Furthermore, we prove results on the minimal relations defining the ideal <i>I</i> for an admissible presentation of <span>\\(\\Lambda \\)</span> in the form <i>KQ</i>/<i>I</i>. This will be the input for the classification of all TSP4 algebras with biserial Gabriel quiver.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-023-01954-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Tame symmetric algebras of period four\",\"authors\":\"Karin Erdmann,&nbsp;Adam Hajduk,&nbsp;Adam Skowyrski\",\"doi\":\"10.1007/s00013-023-01954-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we are concerned with the structure of tame symmetric algebras <span>\\\\(\\\\Lambda \\\\)</span> of period four (TSP4 algebras for short). For a tame algebra, the number of arrows starting or ending at a given vertex cannot be large. Here we will mostly focus on the case when the Gabriel quiver of <span>\\\\(\\\\Lambda \\\\)</span> is biserial, that is, there are at most two arrows ending and at most two arrows starting at each vertex. We present a range of properties (with relatively short proofs) which must hold for the Gabriel quiver of such an algebra. In particular, we show that triangles (and squares) appear naturally, so as for weighted surface algebras (Erdmann and Skowroński in J Algebra 505:490–558, 2018, J Algebra 544:170–227, 2020, J Algebra 569:875–889, 2021). Furthermore, we prove results on the minimal relations defining the ideal <i>I</i> for an admissible presentation of <span>\\\\(\\\\Lambda \\\\)</span> in the form <i>KQ</i>/<i>I</i>. This will be the input for the classification of all TSP4 algebras with biserial Gabriel quiver.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00013-023-01954-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-023-01954-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-023-01954-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们关注的是周期为 4 的驯服对称代数(简称 TSP4 代数)的结构。对于一个驯服代数来说,以给定顶点为起点或终点的箭的数量不能很多。在这里,我们将主要关注 \(\Lambda \) 的 Gabriel quiver 是双向的情况,即每个顶点最多有两个箭头结束,最多有两个箭头开始。我们提出了这样一个代数的 Gabriel quiver 必须成立的一系列性质(并给出了相对简短的证明)。特别是,我们证明三角形(和正方形)会自然出现,就像加权曲面代数一样(Erdmann 和 Skowroński 发表于《代数学杂志》505:490-558,2018 年;《代数学杂志》544:170-227,2020 年;《代数学杂志》569:875-889,2021 年)。此外,我们还证明了定义 KQ/I 形式的 \(\Lambda \)的可容许呈现的理想 I 的最小关系的结果。这将是对所有具有双列加布里埃尔四维的 TSP4 集合进行分类的输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tame symmetric algebras of period four

Tame symmetric algebras of period four

In this paper, we are concerned with the structure of tame symmetric algebras \(\Lambda \) of period four (TSP4 algebras for short). For a tame algebra, the number of arrows starting or ending at a given vertex cannot be large. Here we will mostly focus on the case when the Gabriel quiver of \(\Lambda \) is biserial, that is, there are at most two arrows ending and at most two arrows starting at each vertex. We present a range of properties (with relatively short proofs) which must hold for the Gabriel quiver of such an algebra. In particular, we show that triangles (and squares) appear naturally, so as for weighted surface algebras (Erdmann and Skowroński in J Algebra 505:490–558, 2018, J Algebra 544:170–227, 2020, J Algebra 569:875–889, 2021). Furthermore, we prove results on the minimal relations defining the ideal I for an admissible presentation of \(\Lambda \) in the form KQ/I. This will be the input for the classification of all TSP4 algebras with biserial Gabriel quiver.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信