椭圆问题中可稀疏表示的扩散参数的识别

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Luzia N. Felber, Helmut Harbrecht, Marc Schmidlin
{"title":"椭圆问题中可稀疏表示的扩散参数的识别","authors":"Luzia N. Felber, Helmut Harbrecht, Marc Schmidlin","doi":"10.1137/23m1565346","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 61-90, March 2024. <br/> Abstract. We consider the task of estimating the unknown diffusion parameter in an elliptic PDE as a model problem to develop and test the effectiveness and robustness to noise of reconstruction schemes with sparsity regularization. To this end, the model problem is recast as a nonlinear infinite dimensional optimization problem, where the logarithm of the unknown diffusion parameter is modeled using a linear combination of the elements of a dictionary, i.e., a known bounded sequence of [math] functions, with unknown coefficients that form a sequence in [math]. We show that the regularization of this nonlinear optimization problem using a weighted [math]-norm has minimizers that are finitely supported. We then propose modifications of well-known algorithms (ISTA and FISTA) to find a minimizer of this weighted [math]-norm regularized nonlinear optimization problem that accounts for the fact that in general the smooth part of the functional being optimized is a functional only defined over [math]. We also introduce semismooth methods (ASISTA and FASISTA) for finding a minimizer, which locally uses Gauss–Newton type surrogate models that additionally are stabilized by means of a Levenberg–Marquardt type approach. Our numerical examples show that the regularization with the weighted [math]-norm indeed does make the estimation more robust with respect to noise. Moreover, the numerical examples also demonstrate that the ASISTA and FASISTA methods are quite efficient, outperforming both ISTA and FISTA.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of Sparsely Representable Diffusion Parameters in Elliptic Problems\",\"authors\":\"Luzia N. Felber, Helmut Harbrecht, Marc Schmidlin\",\"doi\":\"10.1137/23m1565346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 61-90, March 2024. <br/> Abstract. We consider the task of estimating the unknown diffusion parameter in an elliptic PDE as a model problem to develop and test the effectiveness and robustness to noise of reconstruction schemes with sparsity regularization. To this end, the model problem is recast as a nonlinear infinite dimensional optimization problem, where the logarithm of the unknown diffusion parameter is modeled using a linear combination of the elements of a dictionary, i.e., a known bounded sequence of [math] functions, with unknown coefficients that form a sequence in [math]. We show that the regularization of this nonlinear optimization problem using a weighted [math]-norm has minimizers that are finitely supported. We then propose modifications of well-known algorithms (ISTA and FISTA) to find a minimizer of this weighted [math]-norm regularized nonlinear optimization problem that accounts for the fact that in general the smooth part of the functional being optimized is a functional only defined over [math]. We also introduce semismooth methods (ASISTA and FASISTA) for finding a minimizer, which locally uses Gauss–Newton type surrogate models that additionally are stabilized by means of a Levenberg–Marquardt type approach. Our numerical examples show that the regularization with the weighted [math]-norm indeed does make the estimation more robust with respect to noise. Moreover, the numerical examples also demonstrate that the ASISTA and FASISTA methods are quite efficient, outperforming both ISTA and FISTA.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1565346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1565346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 影像科学杂志》第 17 卷第 1 期第 61-90 页,2024 年 3 月。 摘要。我们将估计椭圆 PDE 中未知扩散参数的任务视为一个模型问题,以开发和测试稀疏正则化重建方案的有效性和对噪声的鲁棒性。为此,该模型问题被重构为一个非线性无限维优化问题,其中未知扩散参数的对数使用字典元素的线性组合来建模,即已知有界的[math]函数序列,其未知系数在[math]中形成一个序列。我们证明,使用加权[math]正则对这一非线性优化问题进行正则化,其最小值是有限支持的。然后,我们提出了对著名算法(ISTA 和 FISTA)的修改,以找到这个加权[math]正则化非线性优化问题的最小值,该算法考虑到了这样一个事实,即一般情况下,被优化函数的光滑部分是一个仅定义在[math]上的函数。我们还介绍了寻找最小值的半光滑方法(ASISTA 和 FASISTA),该方法局部使用高斯-牛顿类型的代用模型,并通过 Levenberg-Marquardt 类型的方法对其进行稳定。我们的数值示例表明,使用加权[数学]正则的正则化方法确实能使估计结果对噪声更加稳健。此外,数值示例还表明,ASISTA 和 FASISTA 方法相当高效,优于 ISTA 和 FISTA 方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of Sparsely Representable Diffusion Parameters in Elliptic Problems
SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 61-90, March 2024.
Abstract. We consider the task of estimating the unknown diffusion parameter in an elliptic PDE as a model problem to develop and test the effectiveness and robustness to noise of reconstruction schemes with sparsity regularization. To this end, the model problem is recast as a nonlinear infinite dimensional optimization problem, where the logarithm of the unknown diffusion parameter is modeled using a linear combination of the elements of a dictionary, i.e., a known bounded sequence of [math] functions, with unknown coefficients that form a sequence in [math]. We show that the regularization of this nonlinear optimization problem using a weighted [math]-norm has minimizers that are finitely supported. We then propose modifications of well-known algorithms (ISTA and FISTA) to find a minimizer of this weighted [math]-norm regularized nonlinear optimization problem that accounts for the fact that in general the smooth part of the functional being optimized is a functional only defined over [math]. We also introduce semismooth methods (ASISTA and FASISTA) for finding a minimizer, which locally uses Gauss–Newton type surrogate models that additionally are stabilized by means of a Levenberg–Marquardt type approach. Our numerical examples show that the regularization with the weighted [math]-norm indeed does make the estimation more robust with respect to noise. Moreover, the numerical examples also demonstrate that the ASISTA and FASISTA methods are quite efficient, outperforming both ISTA and FISTA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信