{"title":"组 $$\\mathbf {1/2}$ 的权 $$\\mathbf {\\Gamma _0^+({\\varvec{p}})}$ 乘法系统和几何公式","authors":"Michael H. Mertens, Mark A. Norfleet","doi":"10.1007/s00013-023-01948-w","DOIUrl":null,"url":null,"abstract":"<div><p>We construct a weight 1/2 multiplier system for the group <span>\\(\\Gamma _0^+(p)\\)</span>, the normalizer of the congruence subgroup <span>\\(\\Gamma _0(p)\\)</span> where <i>p</i> is an odd prime, and we define an analogue of the eta function and Rademacher symbol and relate it to the geometry of edge paths in a triangulation of the upper half-plane.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"122 2","pages":"143 - 153"},"PeriodicalIF":0.5000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-023-01948-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Weight \\\\(\\\\mathbf {1/2}\\\\) multiplier systems for the group \\\\(\\\\mathbf {\\\\Gamma _0^+({\\\\varvec{p}})}\\\\) and a geometric formulation\",\"authors\":\"Michael H. Mertens, Mark A. Norfleet\",\"doi\":\"10.1007/s00013-023-01948-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We construct a weight 1/2 multiplier system for the group <span>\\\\(\\\\Gamma _0^+(p)\\\\)</span>, the normalizer of the congruence subgroup <span>\\\\(\\\\Gamma _0(p)\\\\)</span> where <i>p</i> is an odd prime, and we define an analogue of the eta function and Rademacher symbol and relate it to the geometry of edge paths in a triangulation of the upper half-plane.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"122 2\",\"pages\":\"143 - 153\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00013-023-01948-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-023-01948-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-023-01948-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
Abstract 我们为 p 为奇素的全等子群(\Gamma _0^+(p)\) 构建了一个权 1/2 乘数系统。的归一化子群,其中 p 是奇素数,我们定义了 eta 函数和拉德马赫符号的类似物,并将其与上半平面三角剖分中的边路径几何联系起来。
Weight \(\mathbf {1/2}\) multiplier systems for the group \(\mathbf {\Gamma _0^+({\varvec{p}})}\) and a geometric formulation
We construct a weight 1/2 multiplier system for the group \(\Gamma _0^+(p)\), the normalizer of the congruence subgroup \(\Gamma _0(p)\) where p is an odd prime, and we define an analogue of the eta function and Rademacher symbol and relate it to the geometry of edge paths in a triangulation of the upper half-plane.
期刊介绍:
Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.