考虑岩石微观特性的围岩动力学模拟和影响规律分析

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
Haoran Wang, Chengchao Guo, Wei Sun, Haibo Wang, Xiaodong Yang, Fuming Wang
{"title":"考虑岩石微观特性的围岩动力学模拟和影响规律分析","authors":"Haoran Wang, Chengchao Guo, Wei Sun, Haibo Wang, Xiaodong Yang, Fuming Wang","doi":"10.1615/intjmultcompeng.2024049902","DOIUrl":null,"url":null,"abstract":"The microscopic properties of rocks control the macroscopic mechanical properties and fracture behavior of rocks. Existing studies on the mechanical properties of rocks have focused on treating rock materials as homogeneous or defining material properties based on Weibull random distributions, which are unable to take into account the mineralogical components and porosity characteristics of rocks. In this paper, based on the theory of bonded near-field dynamics (Peridynamics, PD), the Knuth-Durstenfeld shuffling algorithm is introduced to disrupt the mineral distribution and pore parameters, and a near-field dynamics simulation method is proposed to consider the microscopic properties of rocks. The accuracy of the proposed method is verified based on SEM tests, XRD tests and mechanical property tests of sandy mudstone and fine-grained sandstone. Further, computational analyses were carried out for the rock models under different porosities. The results indicate that porosity has a significant impact on the failure mechanism of the model.","PeriodicalId":50350,"journal":{"name":"International Journal for Multiscale Computational Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peridynamics simulation and influence law analysis considering rock microscopic properties\",\"authors\":\"Haoran Wang, Chengchao Guo, Wei Sun, Haibo Wang, Xiaodong Yang, Fuming Wang\",\"doi\":\"10.1615/intjmultcompeng.2024049902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The microscopic properties of rocks control the macroscopic mechanical properties and fracture behavior of rocks. Existing studies on the mechanical properties of rocks have focused on treating rock materials as homogeneous or defining material properties based on Weibull random distributions, which are unable to take into account the mineralogical components and porosity characteristics of rocks. In this paper, based on the theory of bonded near-field dynamics (Peridynamics, PD), the Knuth-Durstenfeld shuffling algorithm is introduced to disrupt the mineral distribution and pore parameters, and a near-field dynamics simulation method is proposed to consider the microscopic properties of rocks. The accuracy of the proposed method is verified based on SEM tests, XRD tests and mechanical property tests of sandy mudstone and fine-grained sandstone. Further, computational analyses were carried out for the rock models under different porosities. The results indicate that porosity has a significant impact on the failure mechanism of the model.\",\"PeriodicalId\":50350,\"journal\":{\"name\":\"International Journal for Multiscale Computational Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Multiscale Computational Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1615/intjmultcompeng.2024049902\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Multiscale Computational Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/intjmultcompeng.2024049902","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

岩石的微观特性控制着岩石的宏观力学特性和断裂行为。现有的岩石力学性能研究主要是将岩石材料视为均质材料或根据威布尔随机分布定义材料性能,无法考虑岩石的矿物成分和孔隙特征。本文以粘结近场动力学(Peridynamics,PD)理论为基础,引入 Knuth-Durstenfeld 洗牌算法来扰乱矿物分布和孔隙参数,提出了一种考虑岩石微观性质的近场动力学模拟方法。基于对砂质泥岩和细粒砂岩的扫描电镜测试、XRD 测试和力学性能测试,验证了所提方法的准确性。此外,还对不同孔隙率下的岩石模型进行了计算分析。结果表明,孔隙率对模型的破坏机制有重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Peridynamics simulation and influence law analysis considering rock microscopic properties
The microscopic properties of rocks control the macroscopic mechanical properties and fracture behavior of rocks. Existing studies on the mechanical properties of rocks have focused on treating rock materials as homogeneous or defining material properties based on Weibull random distributions, which are unable to take into account the mineralogical components and porosity characteristics of rocks. In this paper, based on the theory of bonded near-field dynamics (Peridynamics, PD), the Knuth-Durstenfeld shuffling algorithm is introduced to disrupt the mineral distribution and pore parameters, and a near-field dynamics simulation method is proposed to consider the microscopic properties of rocks. The accuracy of the proposed method is verified based on SEM tests, XRD tests and mechanical property tests of sandy mudstone and fine-grained sandstone. Further, computational analyses were carried out for the rock models under different porosities. The results indicate that porosity has a significant impact on the failure mechanism of the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
14.30%
发文量
44
审稿时长
>12 weeks
期刊介绍: The aim of the journal is to advance the research and practice in diverse areas of Multiscale Computational Science and Engineering. The journal will publish original papers and educational articles of general value to the field that will bridge the gap between modeling, simulation and design of products based on multiscale principles. The scope of the journal includes papers concerned with bridging of physical scales, ranging from the atomic level to full scale products and problems involving multiple physical processes interacting at multiple spatial and temporal scales. The emerging areas of computational nanotechnology and computational biotechnology and computational energy sciences are of particular interest to the journal. The journal is intended to be of interest and use to researchers and practitioners in academic, governmental and industrial communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信