{"title":"考虑岩石微观特性的围岩动力学模拟和影响规律分析","authors":"Haoran Wang, Chengchao Guo, Wei Sun, Haibo Wang, Xiaodong Yang, Fuming Wang","doi":"10.1615/intjmultcompeng.2024049902","DOIUrl":null,"url":null,"abstract":"The microscopic properties of rocks control the macroscopic mechanical properties and fracture behavior of rocks. Existing studies on the mechanical properties of rocks have focused on treating rock materials as homogeneous or defining material properties based on Weibull random distributions, which are unable to take into account the mineralogical components and porosity characteristics of rocks. In this paper, based on the theory of bonded near-field dynamics (Peridynamics, PD), the Knuth-Durstenfeld shuffling algorithm is introduced to disrupt the mineral distribution and pore parameters, and a near-field dynamics simulation method is proposed to consider the microscopic properties of rocks. The accuracy of the proposed method is verified based on SEM tests, XRD tests and mechanical property tests of sandy mudstone and fine-grained sandstone. Further, computational analyses were carried out for the rock models under different porosities. The results indicate that porosity has a significant impact on the failure mechanism of the model.","PeriodicalId":50350,"journal":{"name":"International Journal for Multiscale Computational Engineering","volume":"14 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peridynamics simulation and influence law analysis considering rock microscopic properties\",\"authors\":\"Haoran Wang, Chengchao Guo, Wei Sun, Haibo Wang, Xiaodong Yang, Fuming Wang\",\"doi\":\"10.1615/intjmultcompeng.2024049902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The microscopic properties of rocks control the macroscopic mechanical properties and fracture behavior of rocks. Existing studies on the mechanical properties of rocks have focused on treating rock materials as homogeneous or defining material properties based on Weibull random distributions, which are unable to take into account the mineralogical components and porosity characteristics of rocks. In this paper, based on the theory of bonded near-field dynamics (Peridynamics, PD), the Knuth-Durstenfeld shuffling algorithm is introduced to disrupt the mineral distribution and pore parameters, and a near-field dynamics simulation method is proposed to consider the microscopic properties of rocks. The accuracy of the proposed method is verified based on SEM tests, XRD tests and mechanical property tests of sandy mudstone and fine-grained sandstone. Further, computational analyses were carried out for the rock models under different porosities. The results indicate that porosity has a significant impact on the failure mechanism of the model.\",\"PeriodicalId\":50350,\"journal\":{\"name\":\"International Journal for Multiscale Computational Engineering\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Multiscale Computational Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1615/intjmultcompeng.2024049902\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Multiscale Computational Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/intjmultcompeng.2024049902","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Peridynamics simulation and influence law analysis considering rock microscopic properties
The microscopic properties of rocks control the macroscopic mechanical properties and fracture behavior of rocks. Existing studies on the mechanical properties of rocks have focused on treating rock materials as homogeneous or defining material properties based on Weibull random distributions, which are unable to take into account the mineralogical components and porosity characteristics of rocks. In this paper, based on the theory of bonded near-field dynamics (Peridynamics, PD), the Knuth-Durstenfeld shuffling algorithm is introduced to disrupt the mineral distribution and pore parameters, and a near-field dynamics simulation method is proposed to consider the microscopic properties of rocks. The accuracy of the proposed method is verified based on SEM tests, XRD tests and mechanical property tests of sandy mudstone and fine-grained sandstone. Further, computational analyses were carried out for the rock models under different porosities. The results indicate that porosity has a significant impact on the failure mechanism of the model.
期刊介绍:
The aim of the journal is to advance the research and practice in diverse areas of Multiscale Computational Science and Engineering. The journal will publish original papers and educational articles of general value to the field that will bridge the gap between modeling, simulation and design of products based on multiscale principles. The scope of the journal includes papers concerned with bridging of physical scales, ranging from the atomic level to full scale products and problems involving multiple physical processes interacting at multiple spatial and temporal scales. The emerging areas of computational nanotechnology and computational biotechnology and computational energy sciences are of particular interest to the journal. The journal is intended to be of interest and use to researchers and practitioners in academic, governmental and industrial communities.