{"title":"NewsCom-TOX:西班牙语新闻文章评论注释语料库","authors":"Mariona Taulé, Montserrat Nofre, Víctor Bargiela, Xavier Bonet","doi":"10.1007/s10579-023-09711-x","DOIUrl":null,"url":null,"abstract":"<p>In this article, we present the NewsCom-TOX corpus, a new corpus manually annotated for toxicity in Spanish. NewsCom-TOX consists of 4359 comments in Spanish posted in response to 21 news articles on social media related to immigration, in order to analyse and identify messages with racial and xenophobic content. This corpus is multi-level annotated with different binary linguistic categories -stance, target, stereotype, sarcasm, mockery, insult, improper language, aggressiveness and intolerance- taking into account not only the information conveyed in each comment, but also the whole discourse thread in which the comment occurs, as well as the information conveyed in the news article, including their images. These categories allow us to identify the presence of toxicity and its intensity, that is, the level of toxicity of each comment. All this information is available for research purposes upon request. Here we describe the NewsCom-TOX corpus, the annotation tagset used, the criteria applied and the annotation process carried out, including the inter-annotator agreement tests conducted. A quantitative analysis of the results obtained is also provided. NewsCom-TOX is a linguistic resource that will be valuable for both linguistic and computational research in Spanish in NLP tasks for the detection of toxic information.</p>","PeriodicalId":49927,"journal":{"name":"Language Resources and Evaluation","volume":"14 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NewsCom-TOX: a corpus of comments on news articles annotated for toxicity in Spanish\",\"authors\":\"Mariona Taulé, Montserrat Nofre, Víctor Bargiela, Xavier Bonet\",\"doi\":\"10.1007/s10579-023-09711-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we present the NewsCom-TOX corpus, a new corpus manually annotated for toxicity in Spanish. NewsCom-TOX consists of 4359 comments in Spanish posted in response to 21 news articles on social media related to immigration, in order to analyse and identify messages with racial and xenophobic content. This corpus is multi-level annotated with different binary linguistic categories -stance, target, stereotype, sarcasm, mockery, insult, improper language, aggressiveness and intolerance- taking into account not only the information conveyed in each comment, but also the whole discourse thread in which the comment occurs, as well as the information conveyed in the news article, including their images. These categories allow us to identify the presence of toxicity and its intensity, that is, the level of toxicity of each comment. All this information is available for research purposes upon request. Here we describe the NewsCom-TOX corpus, the annotation tagset used, the criteria applied and the annotation process carried out, including the inter-annotator agreement tests conducted. A quantitative analysis of the results obtained is also provided. NewsCom-TOX is a linguistic resource that will be valuable for both linguistic and computational research in Spanish in NLP tasks for the detection of toxic information.</p>\",\"PeriodicalId\":49927,\"journal\":{\"name\":\"Language Resources and Evaluation\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Language Resources and Evaluation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10579-023-09711-x\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Language Resources and Evaluation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10579-023-09711-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
NewsCom-TOX: a corpus of comments on news articles annotated for toxicity in Spanish
In this article, we present the NewsCom-TOX corpus, a new corpus manually annotated for toxicity in Spanish. NewsCom-TOX consists of 4359 comments in Spanish posted in response to 21 news articles on social media related to immigration, in order to analyse and identify messages with racial and xenophobic content. This corpus is multi-level annotated with different binary linguistic categories -stance, target, stereotype, sarcasm, mockery, insult, improper language, aggressiveness and intolerance- taking into account not only the information conveyed in each comment, but also the whole discourse thread in which the comment occurs, as well as the information conveyed in the news article, including their images. These categories allow us to identify the presence of toxicity and its intensity, that is, the level of toxicity of each comment. All this information is available for research purposes upon request. Here we describe the NewsCom-TOX corpus, the annotation tagset used, the criteria applied and the annotation process carried out, including the inter-annotator agreement tests conducted. A quantitative analysis of the results obtained is also provided. NewsCom-TOX is a linguistic resource that will be valuable for both linguistic and computational research in Spanish in NLP tasks for the detection of toxic information.
期刊介绍:
Language Resources and Evaluation is the first publication devoted to the acquisition, creation, annotation, and use of language resources, together with methods for evaluation of resources, technologies, and applications.
Language resources include language data and descriptions in machine readable form used to assist and augment language processing applications, such as written or spoken corpora and lexica, multimodal resources, grammars, terminology or domain specific databases and dictionaries, ontologies, multimedia databases, etc., as well as basic software tools for their acquisition, preparation, annotation, management, customization, and use.
Evaluation of language resources concerns assessing the state-of-the-art for a given technology, comparing different approaches to a given problem, assessing the availability of resources and technologies for a given application, benchmarking, and assessing system usability and user satisfaction.