带有分岔的交通流模型的微观推导

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
P. Cardaliaguet, N. Forcadel
{"title":"带有分岔的交通流模型的微观推导","authors":"P. Cardaliaguet,&nbsp;N. Forcadel","doi":"10.1007/s00205-023-01948-8","DOIUrl":null,"url":null,"abstract":"<div><p>The goal of the paper is a rigorous derivation of a macroscopic traffic flow model with a bifurcation or a local perturbation from a microscopic one. The microscopic model is a simple follow-the-leader with random parameters. The random parameters are used as a statistical description of the road taken by a vehicle and its law of motion. The limit model is a deterministic and scalar Hamilton–Jacobi on a network with a flux limiter, the flux-limiter describing how much the bifurcation or the local perturbation slows down the vehicles. The proof of the existence of this flux limiter—the first one in the context of stochastic homogenization—relies on a concentration inequality and on a delicate derivation of a superadditive inequality.\n</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microscopic Derivation of a Traffic Flow Model with a Bifurcation\",\"authors\":\"P. Cardaliaguet,&nbsp;N. Forcadel\",\"doi\":\"10.1007/s00205-023-01948-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The goal of the paper is a rigorous derivation of a macroscopic traffic flow model with a bifurcation or a local perturbation from a microscopic one. The microscopic model is a simple follow-the-leader with random parameters. The random parameters are used as a statistical description of the road taken by a vehicle and its law of motion. The limit model is a deterministic and scalar Hamilton–Jacobi on a network with a flux limiter, the flux-limiter describing how much the bifurcation or the local perturbation slows down the vehicles. The proof of the existence of this flux limiter—the first one in the context of stochastic homogenization—relies on a concentration inequality and on a delicate derivation of a superadditive inequality.\\n</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-023-01948-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-023-01948-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目标是从微观模型严格推导出具有分岔或局部扰动的宏观交通流模型。微观模型是一个带有随机参数的简单跟车模型。随机参数用作对车辆所走道路及其运动规律的统计描述。极限模型是一个网络上的确定性标量汉密尔顿-雅可比模型,带有通量限制器,通量限制器描述了分岔或局部扰动使车辆减速的程度。这种通量限制器存在性的证明--随机均质化背景下的第一个证明--依赖于集中不等式和超加成不等式的微妙推导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microscopic Derivation of a Traffic Flow Model with a Bifurcation

The goal of the paper is a rigorous derivation of a macroscopic traffic flow model with a bifurcation or a local perturbation from a microscopic one. The microscopic model is a simple follow-the-leader with random parameters. The random parameters are used as a statistical description of the road taken by a vehicle and its law of motion. The limit model is a deterministic and scalar Hamilton–Jacobi on a network with a flux limiter, the flux-limiter describing how much the bifurcation or the local perturbation slows down the vehicles. The proof of the existence of this flux limiter—the first one in the context of stochastic homogenization—relies on a concentration inequality and on a delicate derivation of a superadditive inequality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信