Ariel Fernando Pascaner, Antonio Rosato, Alice Fantazzini, Elena Vincenzi, Curzio Basso, Francesco Secchi, Mauro Lo Rito, Michele Conti
{"title":"结合多视角二维卷积神经网络自动进行三维分割并识别异常的冠状动脉主动脉起源","authors":"Ariel Fernando Pascaner, Antonio Rosato, Alice Fantazzini, Elena Vincenzi, Curzio Basso, Francesco Secchi, Mauro Lo Rito, Michele Conti","doi":"10.1007/s10278-023-00950-6","DOIUrl":null,"url":null,"abstract":"<p>This work aimed to automatically segment and classify the coronary arteries with either normal or anomalous origin from the aorta (AAOCA) using convolutional neural networks (CNNs), seeking to enhance and fasten clinician diagnosis. We implemented three single-view 2D Attention U-Nets with 3D view integration and trained them to automatically segment the aortic root and coronary arteries of 124 computed tomography angiographies (CTAs), with normal coronaries or AAOCA. Furthermore, we automatically classified the segmented geometries as normal or AAOCA using a decision tree model. For CTAs in the test set (<i>n</i> = 13), we obtained median Dice score coefficients of 0.95 and 0.84 for the aortic root and the coronary arteries, respectively. Moreover, the classification between normal and AAOCA showed excellent performance with accuracy, precision, and recall all equal to 1 in the test set. We developed a deep learning-based method to automatically segment and classify normal coronary and AAOCA. Our results represent a step towards an automatic screening and risk profiling of patients with AAOCA, based on CTA.</p>","PeriodicalId":50214,"journal":{"name":"Journal of Digital Imaging","volume":"176 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic 3D Segmentation and Identification of Anomalous Aortic Origin of the Coronary Arteries Combining Multi-view 2D Convolutional Neural Networks\",\"authors\":\"Ariel Fernando Pascaner, Antonio Rosato, Alice Fantazzini, Elena Vincenzi, Curzio Basso, Francesco Secchi, Mauro Lo Rito, Michele Conti\",\"doi\":\"10.1007/s10278-023-00950-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work aimed to automatically segment and classify the coronary arteries with either normal or anomalous origin from the aorta (AAOCA) using convolutional neural networks (CNNs), seeking to enhance and fasten clinician diagnosis. We implemented three single-view 2D Attention U-Nets with 3D view integration and trained them to automatically segment the aortic root and coronary arteries of 124 computed tomography angiographies (CTAs), with normal coronaries or AAOCA. Furthermore, we automatically classified the segmented geometries as normal or AAOCA using a decision tree model. For CTAs in the test set (<i>n</i> = 13), we obtained median Dice score coefficients of 0.95 and 0.84 for the aortic root and the coronary arteries, respectively. Moreover, the classification between normal and AAOCA showed excellent performance with accuracy, precision, and recall all equal to 1 in the test set. We developed a deep learning-based method to automatically segment and classify normal coronary and AAOCA. Our results represent a step towards an automatic screening and risk profiling of patients with AAOCA, based on CTA.</p>\",\"PeriodicalId\":50214,\"journal\":{\"name\":\"Journal of Digital Imaging\",\"volume\":\"176 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Digital Imaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-023-00950-6\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10278-023-00950-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Automatic 3D Segmentation and Identification of Anomalous Aortic Origin of the Coronary Arteries Combining Multi-view 2D Convolutional Neural Networks
This work aimed to automatically segment and classify the coronary arteries with either normal or anomalous origin from the aorta (AAOCA) using convolutional neural networks (CNNs), seeking to enhance and fasten clinician diagnosis. We implemented three single-view 2D Attention U-Nets with 3D view integration and trained them to automatically segment the aortic root and coronary arteries of 124 computed tomography angiographies (CTAs), with normal coronaries or AAOCA. Furthermore, we automatically classified the segmented geometries as normal or AAOCA using a decision tree model. For CTAs in the test set (n = 13), we obtained median Dice score coefficients of 0.95 and 0.84 for the aortic root and the coronary arteries, respectively. Moreover, the classification between normal and AAOCA showed excellent performance with accuracy, precision, and recall all equal to 1 in the test set. We developed a deep learning-based method to automatically segment and classify normal coronary and AAOCA. Our results represent a step towards an automatic screening and risk profiling of patients with AAOCA, based on CTA.
期刊介绍:
The Journal of Digital Imaging (JDI) is the official peer-reviewed journal of the Society for Imaging Informatics in Medicine (SIIM). JDI’s goal is to enhance the exchange of knowledge encompassed by the general topic of Imaging Informatics in Medicine such as research and practice in clinical, engineering, and information technologies and techniques in all medical imaging environments. JDI topics are of interest to researchers, developers, educators, physicians, and imaging informatics professionals.
Suggested Topics
PACS and component systems; imaging informatics for the enterprise; image-enabled electronic medical records; RIS and HIS; digital image acquisition; image processing; image data compression; 3D, visualization, and multimedia; speech recognition; computer-aided diagnosis; facilities design; imaging vocabularies and ontologies; Transforming the Radiological Interpretation Process (TRIP™); DICOM and other standards; workflow and process modeling and simulation; quality assurance; archive integrity and security; teleradiology; digital mammography; and radiological informatics education.