预测 COVID-19 住院情况:医疗热线、检测阳性率和疫苗接种覆盖率的重要性

IF 2.1 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Vera van Zoest , Karl Lindberg , Georgios Varotsis , Frank Badu Osei , Tove Fall
{"title":"预测 COVID-19 住院情况:医疗热线、检测阳性率和疫苗接种覆盖率的重要性","authors":"Vera van Zoest ,&nbsp;Karl Lindberg ,&nbsp;Georgios Varotsis ,&nbsp;Frank Badu Osei ,&nbsp;Tove Fall","doi":"10.1016/j.sste.2024.100636","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we developed a negative binomial regression model for one-week ahead spatio-temporal predictions of the number of COVID-19 hospitalizations in Uppsala County, Sweden. Our model utilized weekly aggregated data on testing, vaccination, and calls to the national healthcare hotline. Variable importance analysis revealed that calls to the national healthcare hotline were the most important contributor to prediction performance when predicting COVID-19 hospitalizations. Our results support the importance of early testing, systematic registration of test results, and the value of healthcare hotline data in predicting hospitalizations. The proposed models may be applied to studies modeling hospitalizations of other viral respiratory infections in space and time assuming count data are overdispersed. Our suggested variable importance analysis enables the calculation of the effects on the predictive performance of each covariate. This can inform decisions about which types of data should be prioritized, thereby facilitating the allocation of healthcare resources.</p></div>","PeriodicalId":46645,"journal":{"name":"Spatial and Spatio-Temporal Epidemiology","volume":"48 ","pages":"Article 100636"},"PeriodicalIF":2.1000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1877584524000030/pdfft?md5=e41ddfc5e71a08c21d18542145e8cd5c&pid=1-s2.0-S1877584524000030-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Predicting COVID-19 hospitalizations: The importance of healthcare hotlines, test positivity rates and vaccination coverage\",\"authors\":\"Vera van Zoest ,&nbsp;Karl Lindberg ,&nbsp;Georgios Varotsis ,&nbsp;Frank Badu Osei ,&nbsp;Tove Fall\",\"doi\":\"10.1016/j.sste.2024.100636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we developed a negative binomial regression model for one-week ahead spatio-temporal predictions of the number of COVID-19 hospitalizations in Uppsala County, Sweden. Our model utilized weekly aggregated data on testing, vaccination, and calls to the national healthcare hotline. Variable importance analysis revealed that calls to the national healthcare hotline were the most important contributor to prediction performance when predicting COVID-19 hospitalizations. Our results support the importance of early testing, systematic registration of test results, and the value of healthcare hotline data in predicting hospitalizations. The proposed models may be applied to studies modeling hospitalizations of other viral respiratory infections in space and time assuming count data are overdispersed. Our suggested variable importance analysis enables the calculation of the effects on the predictive performance of each covariate. This can inform decisions about which types of data should be prioritized, thereby facilitating the allocation of healthcare resources.</p></div>\",\"PeriodicalId\":46645,\"journal\":{\"name\":\"Spatial and Spatio-Temporal Epidemiology\",\"volume\":\"48 \",\"pages\":\"Article 100636\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1877584524000030/pdfft?md5=e41ddfc5e71a08c21d18542145e8cd5c&pid=1-s2.0-S1877584524000030-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial and Spatio-Temporal Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877584524000030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial and Spatio-Temporal Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877584524000030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们建立了一个负二项回归模型,用于提前一周对瑞典乌普萨拉县的 COVID-19 住院人数进行时空预测。我们的模型利用了每周有关检测、疫苗接种和拨打全国医疗保健热线的汇总数据。变量重要性分析表明,在预测 COVID-19 住院人数时,拨打全国医疗保健热线是影响预测效果的最重要因素。我们的研究结果证明了早期检测、系统登记检测结果的重要性,以及医疗热线数据在预测住院情况方面的价值。假设计数数据过度分散,所提出的模型可应用于其他病毒性呼吸道感染住院治疗的时空建模研究。我们建议的变量重要性分析可以计算出每个协变量对预测效果的影响。这可以为优先考虑哪类数据提供决策依据,从而促进医疗资源的分配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting COVID-19 hospitalizations: The importance of healthcare hotlines, test positivity rates and vaccination coverage

In this study, we developed a negative binomial regression model for one-week ahead spatio-temporal predictions of the number of COVID-19 hospitalizations in Uppsala County, Sweden. Our model utilized weekly aggregated data on testing, vaccination, and calls to the national healthcare hotline. Variable importance analysis revealed that calls to the national healthcare hotline were the most important contributor to prediction performance when predicting COVID-19 hospitalizations. Our results support the importance of early testing, systematic registration of test results, and the value of healthcare hotline data in predicting hospitalizations. The proposed models may be applied to studies modeling hospitalizations of other viral respiratory infections in space and time assuming count data are overdispersed. Our suggested variable importance analysis enables the calculation of the effects on the predictive performance of each covariate. This can inform decisions about which types of data should be prioritized, thereby facilitating the allocation of healthcare resources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Spatial and Spatio-Temporal Epidemiology
Spatial and Spatio-Temporal Epidemiology PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
5.10
自引率
8.80%
发文量
63
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信