{"title":"表面工程和优化 DepoFoam 系统:优化药物输送、稳定性和质量的可靠质量设计方法","authors":"Jebastin Koilpillai, Damodharan Narayanasamy","doi":"10.1007/s12247-024-09808-y","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>The study utilized non-ionic polymer macrogol to transform the surface properties of the DepoFoam drug carrier system, developing “surface-remodeled DepoFoam (SR-DFO)” following quality by design (QbD) principles. The primary objectives were to prolong drug delivery, reduce sudden releases, and enhance the overall quality and stability of DepoFoam. The research hypotheses are centered on the capability of macrogol-based surface modification to create an optimized drug delivery system with improved stability, extended drug release, and enhanced pharmacokinetic properties.</p><h3>Methods</h3><p>In this research, surface remodeling was achieved through a series of processes, including high-shear homogenizer-assisted double emulsification, PEGylation, and purification. The resulting SR-DFO formulations were comprehensively characterized for critical quality attributes. Optimization was conducted using the Box-Behnken design, resulting in significant enhancements in both quality and stability compared to conventional liposomes and unmodified DepoFoam.</p><h3>Results</h3><p>Comprehensive product characterization validates anticipated quality parameters: entrapment efficiency (86.16 ± 0.44%), drug-loading capacity (25.28 ± 0.07%), vesicle size (40.47 ± 0.1 µm), polydispersity index (PDI) of 0.051 ± 0.03, lipocrit of 90.67 ± 0.26%, and zeta potential of − 31.25 ± 3.25 mV. Remarkably, macrogol-based SR-DFO consistently sustains drug release above 90% for 168 h, devoid of sudden spikes, and maintains stability at 4 °C for 180 days. Mathematical models confirm drug release mechanisms’ validity. Moreover, this study emphasizes the critical influence of key materials like macrogol, phospholipids, triglycerides, and process variables on shaping product quality.</p><h3>Conclusion</h3><p>These findings highlight the inventive promise of macrogol-coated DFO in transforming drug delivery, quality, and stability. This research, driven by a well-formed hypothesis, meticulous execution, and precise data analysis, opens new horizons in polymer-based DepoFoam systems.</p><h3>Graphical Abstract</h3><p>First author: Jebastin Koilpillai, M.Pharm.</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":656,"journal":{"name":"Journal of Pharmaceutical Innovation","volume":"19 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface Engineering and Optimizing DepoFoam System: A Robust Quality by Design Approach for Optimal Drug Delivery, Stability, and Quality\",\"authors\":\"Jebastin Koilpillai, Damodharan Narayanasamy\",\"doi\":\"10.1007/s12247-024-09808-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><p>The study utilized non-ionic polymer macrogol to transform the surface properties of the DepoFoam drug carrier system, developing “surface-remodeled DepoFoam (SR-DFO)” following quality by design (QbD) principles. The primary objectives were to prolong drug delivery, reduce sudden releases, and enhance the overall quality and stability of DepoFoam. The research hypotheses are centered on the capability of macrogol-based surface modification to create an optimized drug delivery system with improved stability, extended drug release, and enhanced pharmacokinetic properties.</p><h3>Methods</h3><p>In this research, surface remodeling was achieved through a series of processes, including high-shear homogenizer-assisted double emulsification, PEGylation, and purification. The resulting SR-DFO formulations were comprehensively characterized for critical quality attributes. Optimization was conducted using the Box-Behnken design, resulting in significant enhancements in both quality and stability compared to conventional liposomes and unmodified DepoFoam.</p><h3>Results</h3><p>Comprehensive product characterization validates anticipated quality parameters: entrapment efficiency (86.16 ± 0.44%), drug-loading capacity (25.28 ± 0.07%), vesicle size (40.47 ± 0.1 µm), polydispersity index (PDI) of 0.051 ± 0.03, lipocrit of 90.67 ± 0.26%, and zeta potential of − 31.25 ± 3.25 mV. Remarkably, macrogol-based SR-DFO consistently sustains drug release above 90% for 168 h, devoid of sudden spikes, and maintains stability at 4 °C for 180 days. Mathematical models confirm drug release mechanisms’ validity. Moreover, this study emphasizes the critical influence of key materials like macrogol, phospholipids, triglycerides, and process variables on shaping product quality.</p><h3>Conclusion</h3><p>These findings highlight the inventive promise of macrogol-coated DFO in transforming drug delivery, quality, and stability. This research, driven by a well-formed hypothesis, meticulous execution, and precise data analysis, opens new horizons in polymer-based DepoFoam systems.</p><h3>Graphical Abstract</h3><p>First author: Jebastin Koilpillai, M.Pharm.</p>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":656,\"journal\":{\"name\":\"Journal of Pharmaceutical Innovation\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmaceutical Innovation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12247-024-09808-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmaceutical Innovation","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12247-024-09808-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Surface Engineering and Optimizing DepoFoam System: A Robust Quality by Design Approach for Optimal Drug Delivery, Stability, and Quality
Purpose
The study utilized non-ionic polymer macrogol to transform the surface properties of the DepoFoam drug carrier system, developing “surface-remodeled DepoFoam (SR-DFO)” following quality by design (QbD) principles. The primary objectives were to prolong drug delivery, reduce sudden releases, and enhance the overall quality and stability of DepoFoam. The research hypotheses are centered on the capability of macrogol-based surface modification to create an optimized drug delivery system with improved stability, extended drug release, and enhanced pharmacokinetic properties.
Methods
In this research, surface remodeling was achieved through a series of processes, including high-shear homogenizer-assisted double emulsification, PEGylation, and purification. The resulting SR-DFO formulations were comprehensively characterized for critical quality attributes. Optimization was conducted using the Box-Behnken design, resulting in significant enhancements in both quality and stability compared to conventional liposomes and unmodified DepoFoam.
Results
Comprehensive product characterization validates anticipated quality parameters: entrapment efficiency (86.16 ± 0.44%), drug-loading capacity (25.28 ± 0.07%), vesicle size (40.47 ± 0.1 µm), polydispersity index (PDI) of 0.051 ± 0.03, lipocrit of 90.67 ± 0.26%, and zeta potential of − 31.25 ± 3.25 mV. Remarkably, macrogol-based SR-DFO consistently sustains drug release above 90% for 168 h, devoid of sudden spikes, and maintains stability at 4 °C for 180 days. Mathematical models confirm drug release mechanisms’ validity. Moreover, this study emphasizes the critical influence of key materials like macrogol, phospholipids, triglycerides, and process variables on shaping product quality.
Conclusion
These findings highlight the inventive promise of macrogol-coated DFO in transforming drug delivery, quality, and stability. This research, driven by a well-formed hypothesis, meticulous execution, and precise data analysis, opens new horizons in polymer-based DepoFoam systems.
期刊介绍:
The Journal of Pharmaceutical Innovation (JPI), is an international, multidisciplinary peer-reviewed scientific journal dedicated to publishing high quality papers emphasizing innovative research and applied technologies within the pharmaceutical and biotechnology industries. JPI''s goal is to be the premier communication vehicle for the critical body of knowledge that is needed for scientific evolution and technical innovation, from R&D to market. Topics will fall under the following categories:
Materials science,
Product design,
Process design, optimization, automation and control,
Facilities; Information management,
Regulatory policy and strategy,
Supply chain developments ,
Education and professional development,
Journal of Pharmaceutical Innovation publishes four issues a year.