D. N. Kulagin, U. V. Simakova, A. A. Lunina, A. L. Vereshchaka
{"title":"大西洋 Hansarsia(原 Nematoscelis)的综合分类方法产生了新的磷虾类群(甲壳纲:大戟科)","authors":"D. N. Kulagin, U. V. Simakova, A. A. Lunina, A. L. Vereshchaka","doi":"10.1071/is23034","DOIUrl":null,"url":null,"abstract":"<p>A recent molecular phylogenetic and biogeographic study on the krill genus <i>Hansarsia</i> revealed undescribed cryptic diversity in the Atlantic. Each of four species analysed encompassed robust molecular clades that were linked to dimorphic males in <i>H. microps</i>, <i>H. atlantica</i> and <i>H. tenella</i>. We tested the robustness and divergence of the observed clades using an integrative approach including (1) three independent species delimitation methods for the mitochondrial <i>COI</i> gene (ASAP, GMYC, bPTP), (2) variability of two nuclear genes (<i>H3</i> and <i>ITS1</i>) and (3) morphological analysis (MDS and PCA) with a dataset of 22 characters scored for 131 specimens. Both molecular and morphological analyses resulted in at least six distinct clades within the Atlantic <i>Hansarsia.</i> The strongest divergence was revealed between the two clades of <i>H. tenella</i>, one of which we diagnosed as a new species. Two clades of <i>H. megalops</i> also showed significant divergence but in the absence of males, we were reluctant to designate new species. Different clades linked to male forms in <i>H. microps</i> and <i>H. atlantica</i> are suggested as an incipient species. We also hypothesise an unusual trend in the evolution of euphausiids, in which visual recognition enhances tactile interaction during mating. Our results show that analyses of ostensibly well studied groups may yet yield taxonomic surprises.</p><p>ZooBank: urn:lsid:zoobank.org:pub:AE045636-50EF-450A-B9B3-9231E8B91522</p>","PeriodicalId":54927,"journal":{"name":"Invertebrate Systematics","volume":"31 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An integrative taxonomic approach to the Atlantic Hansarsia (formerly Nematoscelis) yields new krill taxa (Crustacea: Euphausiidae)\",\"authors\":\"D. N. Kulagin, U. V. Simakova, A. A. Lunina, A. L. Vereshchaka\",\"doi\":\"10.1071/is23034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A recent molecular phylogenetic and biogeographic study on the krill genus <i>Hansarsia</i> revealed undescribed cryptic diversity in the Atlantic. Each of four species analysed encompassed robust molecular clades that were linked to dimorphic males in <i>H. microps</i>, <i>H. atlantica</i> and <i>H. tenella</i>. We tested the robustness and divergence of the observed clades using an integrative approach including (1) three independent species delimitation methods for the mitochondrial <i>COI</i> gene (ASAP, GMYC, bPTP), (2) variability of two nuclear genes (<i>H3</i> and <i>ITS1</i>) and (3) morphological analysis (MDS and PCA) with a dataset of 22 characters scored for 131 specimens. Both molecular and morphological analyses resulted in at least six distinct clades within the Atlantic <i>Hansarsia.</i> The strongest divergence was revealed between the two clades of <i>H. tenella</i>, one of which we diagnosed as a new species. Two clades of <i>H. megalops</i> also showed significant divergence but in the absence of males, we were reluctant to designate new species. Different clades linked to male forms in <i>H. microps</i> and <i>H. atlantica</i> are suggested as an incipient species. We also hypothesise an unusual trend in the evolution of euphausiids, in which visual recognition enhances tactile interaction during mating. Our results show that analyses of ostensibly well studied groups may yet yield taxonomic surprises.</p><p>ZooBank: urn:lsid:zoobank.org:pub:AE045636-50EF-450A-B9B3-9231E8B91522</p>\",\"PeriodicalId\":54927,\"journal\":{\"name\":\"Invertebrate Systematics\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Invertebrate Systematics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1071/is23034\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Invertebrate Systematics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/is23034","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
An integrative taxonomic approach to the Atlantic Hansarsia (formerly Nematoscelis) yields new krill taxa (Crustacea: Euphausiidae)
A recent molecular phylogenetic and biogeographic study on the krill genus Hansarsia revealed undescribed cryptic diversity in the Atlantic. Each of four species analysed encompassed robust molecular clades that were linked to dimorphic males in H. microps, H. atlantica and H. tenella. We tested the robustness and divergence of the observed clades using an integrative approach including (1) three independent species delimitation methods for the mitochondrial COI gene (ASAP, GMYC, bPTP), (2) variability of two nuclear genes (H3 and ITS1) and (3) morphological analysis (MDS and PCA) with a dataset of 22 characters scored for 131 specimens. Both molecular and morphological analyses resulted in at least six distinct clades within the Atlantic Hansarsia. The strongest divergence was revealed between the two clades of H. tenella, one of which we diagnosed as a new species. Two clades of H. megalops also showed significant divergence but in the absence of males, we were reluctant to designate new species. Different clades linked to male forms in H. microps and H. atlantica are suggested as an incipient species. We also hypothesise an unusual trend in the evolution of euphausiids, in which visual recognition enhances tactile interaction during mating. Our results show that analyses of ostensibly well studied groups may yet yield taxonomic surprises.
期刊介绍:
Invertebrate Systematics (formerly known as Invertebrate Taxonomy) is an international journal publishing original and significant contributions on the systematics, phylogeny and biogeography of all invertebrate taxa. Articles in the journal provide comprehensive treatments of clearly defined taxonomic groups, often emphasising their biodiversity patterns and/or biological aspects. The journal also includes contributions on the systematics of selected species that are of particular conservation, economic, medical or veterinary importance.
Invertebrate Systematics is a vital resource globally for scientists, students, conservation biologists, environmental consultants and government policy advisors who are interested in terrestrial, freshwater and marine systems.
Invertebrate Systematics is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.