神经霍克斯:加密货币市场中的高维非参数估计和因果关系分析

Timothée Fabre, Ioane Muni Toke
{"title":"神经霍克斯:加密货币市场中的高维非参数估计和因果关系分析","authors":"Timothée Fabre, Ioane Muni Toke","doi":"arxiv-2401.09361","DOIUrl":null,"url":null,"abstract":"We propose a novel approach to marked Hawkes kernel inference which we name\nthe moment-based neural Hawkes estimation method. Hawkes processes are fully\ncharacterized by their first and second order statistics through a Fredholm\nintegral equation of the second kind. Using recent advances in solving partial\ndifferential equations with physics-informed neural networks, we provide a\nnumerical procedure to solve this integral equation in high dimension. Together\nwith an adapted training pipeline, we give a generic set of hyperparameters\nthat produces robust results across a wide range of kernel shapes. We conduct\nan extensive numerical validation on simulated data. We finally propose two\napplications of the method to the analysis of the microstructure of\ncryptocurrency markets. In a first application we extract the influence of\nvolume on the arrival rate of BTC-USD trades and in a second application we\nanalyze the causality relationships and their directions amongst a universe of\n15 cryptocurrency pairs in a centralized exchange.","PeriodicalId":501478,"journal":{"name":"arXiv - QuantFin - Trading and Market Microstructure","volume":"143 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural Hawkes: Non-Parametric Estimation in High Dimension and Causality Analysis in Cryptocurrency Markets\",\"authors\":\"Timothée Fabre, Ioane Muni Toke\",\"doi\":\"arxiv-2401.09361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel approach to marked Hawkes kernel inference which we name\\nthe moment-based neural Hawkes estimation method. Hawkes processes are fully\\ncharacterized by their first and second order statistics through a Fredholm\\nintegral equation of the second kind. Using recent advances in solving partial\\ndifferential equations with physics-informed neural networks, we provide a\\nnumerical procedure to solve this integral equation in high dimension. Together\\nwith an adapted training pipeline, we give a generic set of hyperparameters\\nthat produces robust results across a wide range of kernel shapes. We conduct\\nan extensive numerical validation on simulated data. We finally propose two\\napplications of the method to the analysis of the microstructure of\\ncryptocurrency markets. In a first application we extract the influence of\\nvolume on the arrival rate of BTC-USD trades and in a second application we\\nanalyze the causality relationships and their directions amongst a universe of\\n15 cryptocurrency pairs in a centralized exchange.\",\"PeriodicalId\":501478,\"journal\":{\"name\":\"arXiv - QuantFin - Trading and Market Microstructure\",\"volume\":\"143 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Trading and Market Microstructure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2401.09361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Trading and Market Microstructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.09361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种标记霍克斯核推断的新方法,并将其命名为基于矩的神经霍克斯估计方法。霍克斯过程通过二阶弗里德霍尔积分方程由其一阶和二阶统计量完全定性。利用最近在用物理信息神经网络求解偏微分方程方面取得的进展,我们提供了一个数值程序来求解这个高维积分方程。我们给出了一套通用的超参数,它能在广泛的内核形状中产生稳健的结果。我们在模拟数据上进行了广泛的数值验证。最后,我们提出了该方法在加密货币市场微观结构分析中的两种应用。在第一个应用中,我们提取了交易量对 BTC-USD 交易到达率的影响;在第二个应用中,我们分析了集中式交易所中 15 种加密货币对之间的因果关系及其方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Hawkes: Non-Parametric Estimation in High Dimension and Causality Analysis in Cryptocurrency Markets
We propose a novel approach to marked Hawkes kernel inference which we name the moment-based neural Hawkes estimation method. Hawkes processes are fully characterized by their first and second order statistics through a Fredholm integral equation of the second kind. Using recent advances in solving partial differential equations with physics-informed neural networks, we provide a numerical procedure to solve this integral equation in high dimension. Together with an adapted training pipeline, we give a generic set of hyperparameters that produces robust results across a wide range of kernel shapes. We conduct an extensive numerical validation on simulated data. We finally propose two applications of the method to the analysis of the microstructure of cryptocurrency markets. In a first application we extract the influence of volume on the arrival rate of BTC-USD trades and in a second application we analyze the causality relationships and their directions amongst a universe of 15 cryptocurrency pairs in a centralized exchange.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信