{"title":"遥感变化检测深度学习的发展:综述","authors":"Gaganpreet Kaur, Yasir Afaq","doi":"10.1111/tgis.13133","DOIUrl":null,"url":null,"abstract":"Deep learning (DL) algorithms have become increasingly popular in recent years for remote sensing applications, particularly in the field of change detection. DL has proven to be successful in automatically identifying changes in satellite images with varying resolutions. The integration of DL with remote sensing has not only facilitated the identification of global and regional changes but has also been a valuable resource for the scientific community. Researchers have developed numerous approaches for change detection, and the proposed work provides a summary of the most recent ones. Additionally, it introduces the common DL techniques used for detecting changes in satellite photos. The meta-analysis conducted in this article serves two purposes. Firstly, it tracks the evolution of change detection in DL investigations, highlighting the advancements made in this field. Secondly, it utilizes powerful DL-based change detection algorithms to determine the best strategy for monitoring changes at different resolutions. Furthermore, the proposed work thoroughly analyzes the performance of several DL approaches used for change detection. It discusses the strengths and limitations of these approaches, providing insights into their effectiveness and areas for improvement. The article also discusses future directions for DL-based change detection, emphasizing the need for further research and development in this area.","PeriodicalId":47842,"journal":{"name":"Transactions in GIS","volume":"11 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developments in deep learning for change detection in remote sensing: A review\",\"authors\":\"Gaganpreet Kaur, Yasir Afaq\",\"doi\":\"10.1111/tgis.13133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning (DL) algorithms have become increasingly popular in recent years for remote sensing applications, particularly in the field of change detection. DL has proven to be successful in automatically identifying changes in satellite images with varying resolutions. The integration of DL with remote sensing has not only facilitated the identification of global and regional changes but has also been a valuable resource for the scientific community. Researchers have developed numerous approaches for change detection, and the proposed work provides a summary of the most recent ones. Additionally, it introduces the common DL techniques used for detecting changes in satellite photos. The meta-analysis conducted in this article serves two purposes. Firstly, it tracks the evolution of change detection in DL investigations, highlighting the advancements made in this field. Secondly, it utilizes powerful DL-based change detection algorithms to determine the best strategy for monitoring changes at different resolutions. Furthermore, the proposed work thoroughly analyzes the performance of several DL approaches used for change detection. It discusses the strengths and limitations of these approaches, providing insights into their effectiveness and areas for improvement. The article also discusses future directions for DL-based change detection, emphasizing the need for further research and development in this area.\",\"PeriodicalId\":47842,\"journal\":{\"name\":\"Transactions in GIS\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions in GIS\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1111/tgis.13133\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions in GIS","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/tgis.13133","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY","Score":null,"Total":0}
Developments in deep learning for change detection in remote sensing: A review
Deep learning (DL) algorithms have become increasingly popular in recent years for remote sensing applications, particularly in the field of change detection. DL has proven to be successful in automatically identifying changes in satellite images with varying resolutions. The integration of DL with remote sensing has not only facilitated the identification of global and regional changes but has also been a valuable resource for the scientific community. Researchers have developed numerous approaches for change detection, and the proposed work provides a summary of the most recent ones. Additionally, it introduces the common DL techniques used for detecting changes in satellite photos. The meta-analysis conducted in this article serves two purposes. Firstly, it tracks the evolution of change detection in DL investigations, highlighting the advancements made in this field. Secondly, it utilizes powerful DL-based change detection algorithms to determine the best strategy for monitoring changes at different resolutions. Furthermore, the proposed work thoroughly analyzes the performance of several DL approaches used for change detection. It discusses the strengths and limitations of these approaches, providing insights into their effectiveness and areas for improvement. The article also discusses future directions for DL-based change detection, emphasizing the need for further research and development in this area.
期刊介绍:
Transactions in GIS is an international journal which provides a forum for high quality, original research articles, review articles, short notes and book reviews that focus on: - practical and theoretical issues influencing the development of GIS - the collection, analysis, modelling, interpretation and display of spatial data within GIS - the connections between GIS and related technologies - new GIS applications which help to solve problems affecting the natural or built environments, or business