Paul Seibert, Alexander Raßloff, Yichi Zhang, Karl Kalina, Paul Reck, Daniel Peterseim, Markus Kästner
{"title":"利用神经细胞自动机从统计描述符重构微观结构","authors":"Paul Seibert, Alexander Raßloff, Yichi Zhang, Karl Kalina, Paul Reck, Daniel Peterseim, Markus Kästner","doi":"10.1007/s40192-023-00335-1","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The problem of generating microstructures of complex materials in silico has been approached from various directions including simulation, Markov, deep learning and descriptor-based approaches. This work presents a hybrid method that is inspired by all four categories and has interesting scalability properties. A neural cellular automaton is trained to evolve microstructures based on local information. Unlike most machine learning-based approaches, it does not directly require a data set of reference micrographs, but is trained from statistical microstructure descriptors that can stem from a single reference. This means that the training cost scales only with the complexity of the structure and associated descriptors. Since the size of the reconstructed structures can be set during inference, even extremely large structures can be efficiently generated. Similarly, the method is very efficient if many structures are to be reconstructed from the same descriptor for statistical evaluations. The method is formulated and discussed in detail by means of various numerical experiments, demonstrating its utility and scalability.</p>","PeriodicalId":13604,"journal":{"name":"Integrating Materials and Manufacturing Innovation","volume":"248 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconstructing Microstructures From Statistical Descriptors Using Neural Cellular Automata\",\"authors\":\"Paul Seibert, Alexander Raßloff, Yichi Zhang, Karl Kalina, Paul Reck, Daniel Peterseim, Markus Kästner\",\"doi\":\"10.1007/s40192-023-00335-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The problem of generating microstructures of complex materials in silico has been approached from various directions including simulation, Markov, deep learning and descriptor-based approaches. This work presents a hybrid method that is inspired by all four categories and has interesting scalability properties. A neural cellular automaton is trained to evolve microstructures based on local information. Unlike most machine learning-based approaches, it does not directly require a data set of reference micrographs, but is trained from statistical microstructure descriptors that can stem from a single reference. This means that the training cost scales only with the complexity of the structure and associated descriptors. Since the size of the reconstructed structures can be set during inference, even extremely large structures can be efficiently generated. Similarly, the method is very efficient if many structures are to be reconstructed from the same descriptor for statistical evaluations. The method is formulated and discussed in detail by means of various numerical experiments, demonstrating its utility and scalability.</p>\",\"PeriodicalId\":13604,\"journal\":{\"name\":\"Integrating Materials and Manufacturing Innovation\",\"volume\":\"248 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrating Materials and Manufacturing Innovation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40192-023-00335-1\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrating Materials and Manufacturing Innovation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40192-023-00335-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Reconstructing Microstructures From Statistical Descriptors Using Neural Cellular Automata
Abstract
The problem of generating microstructures of complex materials in silico has been approached from various directions including simulation, Markov, deep learning and descriptor-based approaches. This work presents a hybrid method that is inspired by all four categories and has interesting scalability properties. A neural cellular automaton is trained to evolve microstructures based on local information. Unlike most machine learning-based approaches, it does not directly require a data set of reference micrographs, but is trained from statistical microstructure descriptors that can stem from a single reference. This means that the training cost scales only with the complexity of the structure and associated descriptors. Since the size of the reconstructed structures can be set during inference, even extremely large structures can be efficiently generated. Similarly, the method is very efficient if many structures are to be reconstructed from the same descriptor for statistical evaluations. The method is formulated and discussed in detail by means of various numerical experiments, demonstrating its utility and scalability.
期刊介绍:
The journal will publish: Research that supports building a model-based definition of materials and processes that is compatible with model-based engineering design processes and multidisciplinary design optimization; Descriptions of novel experimental or computational tools or data analysis techniques, and their application, that are to be used for ICME; Best practices in verification and validation of computational tools, sensitivity analysis, uncertainty quantification, and data management, as well as standards and protocols for software integration and exchange of data; In-depth descriptions of data, databases, and database tools; Detailed case studies on efforts, and their impact, that integrate experiment and computation to solve an enduring engineering problem in materials and manufacturing.