赫米特铅笔的通用特征结构

IF 1.5 2区 数学 Q2 MATHEMATICS, APPLIED
Fernando De Terán, Andrii Dmytryshyn, Froilán M. Dopico
{"title":"赫米特铅笔的通用特征结构","authors":"Fernando De Terán, Andrii Dmytryshyn, Froilán M. Dopico","doi":"10.1137/22m1523297","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 1, Page 260-283, March 2024. <br/> Abstract. We obtain the generic complete eigenstructures of complex Hermitian [math] matrix pencils with rank at most [math] (with [math]). To do this, we prove that the set of such pencils is the union of a finite number of bundle closures, where each bundle is the set of complex Hermitian [math] pencils with the same complete eigenstructure (up to the specific values of the distinct finite eigenvalues). We also obtain the explicit number of such bundles and their codimension. The cases [math], corresponding to general Hermitian pencils, and [math] exhibit surprising differences, since for [math] the generic complete eigenstructures can contain only real eigenvalues, while for [math] they can contain real and nonreal eigenvalues. Moreover, we will see that the sign characteristic of the real eigenvalues plays a relevant role for determining the generic eigenstructures.","PeriodicalId":49538,"journal":{"name":"SIAM Journal on Matrix Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generic Eigenstructures of Hermitian Pencils\",\"authors\":\"Fernando De Terán, Andrii Dmytryshyn, Froilán M. Dopico\",\"doi\":\"10.1137/22m1523297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 1, Page 260-283, March 2024. <br/> Abstract. We obtain the generic complete eigenstructures of complex Hermitian [math] matrix pencils with rank at most [math] (with [math]). To do this, we prove that the set of such pencils is the union of a finite number of bundle closures, where each bundle is the set of complex Hermitian [math] pencils with the same complete eigenstructure (up to the specific values of the distinct finite eigenvalues). We also obtain the explicit number of such bundles and their codimension. The cases [math], corresponding to general Hermitian pencils, and [math] exhibit surprising differences, since for [math] the generic complete eigenstructures can contain only real eigenvalues, while for [math] they can contain real and nonreal eigenvalues. Moreover, we will see that the sign characteristic of the real eigenvalues plays a relevant role for determining the generic eigenstructures.\",\"PeriodicalId\":49538,\"journal\":{\"name\":\"SIAM Journal on Matrix Analysis and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Matrix Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1523297\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Matrix Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1523297","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 矩阵分析与应用期刊》,第 45 卷,第 1 期,第 260-283 页,2024 年 3 月。 摘要。我们得到了秩最多为[math](含[math])的复赫米特[math]矩阵铅笔的一般完整特征结构。为此,我们证明这类铅笔的集合是有限数量的束闭包的联合,其中每个束是具有相同完整特征结构(直到不同有限特征值的特定值)的复赫米特[数学]铅笔的集合。我们还得到了此类束的显式数量及其标度。对应于一般赫尔墨斯铅笔的[math]和[math]两种情况表现出惊人的差异,因为对于[math],一般的完整特征结构只能包含实特征值,而对于[math],它们可以包含实和非实特征值。此外,我们还将看到,实特征值的符号特征对确定通用特征结构起着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generic Eigenstructures of Hermitian Pencils
SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 1, Page 260-283, March 2024.
Abstract. We obtain the generic complete eigenstructures of complex Hermitian [math] matrix pencils with rank at most [math] (with [math]). To do this, we prove that the set of such pencils is the union of a finite number of bundle closures, where each bundle is the set of complex Hermitian [math] pencils with the same complete eigenstructure (up to the specific values of the distinct finite eigenvalues). We also obtain the explicit number of such bundles and their codimension. The cases [math], corresponding to general Hermitian pencils, and [math] exhibit surprising differences, since for [math] the generic complete eigenstructures can contain only real eigenvalues, while for [math] they can contain real and nonreal eigenvalues. Moreover, we will see that the sign characteristic of the real eigenvalues plays a relevant role for determining the generic eigenstructures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
6.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Matrix Analysis and Applications contains research articles in matrix analysis and its applications and papers of interest to the numerical linear algebra community. Applications include such areas as signal processing, systems and control theory, statistics, Markov chains, and mathematical biology. Also contains papers that are of a theoretical nature but have a possible impact on applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信