M F Sanamyan, Sh U Bobokhujayev, Sh S Abdukarimov, O G Silkova
{"title":"BC2F1杂交种中棉花染色体从Gossypium barbadense L.导入G. hirsutum L.基因组的分子遗传学和细胞遗传学分析。","authors":"M F Sanamyan, Sh U Bobokhujayev, Sh S Abdukarimov, O G Silkova","doi":"10.18699/VJGB-23-110","DOIUrl":null,"url":null,"abstract":"<p><p>Substitution lines of the cotton Gossypium hirsutum L. involving chromosomes of the tetraploid species G. barbadense L., G. tomentosum Nutt. ex Seem., and G. mustelinum Miers ex Watt. are a valuable source for breeding, increasing the genetic diversity of G. hirsutum. The substitution of certain G. hirsutum L. chromosomes with G. barbadense chromosomes affect fibre elongation, fibre yield, fibre strength, and micronaire. To increase the efficiency of creating lines, it is necessary to study the nature of the introgression of alien chromosomes into the G. hirsutum L. genome. As a result of molecular genetic analysis of BC2F1 hybrids obtained from crossing monosomic lines of the cotton G. hirsutum from the cytogenetic collection of Uzbekistan with monosomic backcross hybrids BC1F1 G. hirsutum × G. barbadense on the same chromosomes, genetic differences between the hybrids in the profile of chromosome-specific microsatellite SSR markers were found. The predominant introgression of chromosomes 4, 6 and 12 of the At-subgenome and 22 of the Dt-subgenome of G. barbadense was revealed, while chromosomes 2 and 7 of the At-subgenome and 18 of the Dt- subgenome of G. barbadense were characterized by elimination. Among them, chromosomes 7 of the At- subgenome and 18 of the Dt-subgenome of G. barbadense were eliminated in the first backcross generation. In this work, two lines, CS- B06 and CS-B07, from the American cytogenetic collection with a putative substitution involving chromosomes 6 and 7 of the At-subgenome were analysed. The presence of only polymorphic alleles from the species G. hirsutum and the absence of polymorphic alleles from the species G. barbadense were revealed, which showed the absence of substitution involving these chromosomes. BC2F1 hybrids with monosomy for both G. barbadense and G. hirsutum chromosomes were characterized by regular pairing of chromosomes and high meiotic indexes. However, many hybrids were characterized by a decrease in pollen fertility. Two hybrids with monosomy for chromosome 7 of the At-subgenome of G. hirsutum and chromosome 6 of the At-subgenome of G. barbadense had the greatest reduction in pollen viability (70.09 ± 1.57 and 75.00 ± 1.66 %, respectively). Thus, this work shows a specific feature in the introgression of individual chromosomes of the cotton species G. barbadense into the cotton G. hirsutum genome.</p>","PeriodicalId":44339,"journal":{"name":"Vavilovskii Zhurnal Genetiki i Selektsii","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10792509/pdf/","citationCount":"0","resultStr":"{\"title\":\"Molecular-genetic and cytogenetic analyses of cotton chromosome introgression from Gossypium barbadense L. into the genome of G. hirsutum L. in BC2F1 hybrids.\",\"authors\":\"M F Sanamyan, Sh U Bobokhujayev, Sh S Abdukarimov, O G Silkova\",\"doi\":\"10.18699/VJGB-23-110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Substitution lines of the cotton Gossypium hirsutum L. involving chromosomes of the tetraploid species G. barbadense L., G. tomentosum Nutt. ex Seem., and G. mustelinum Miers ex Watt. are a valuable source for breeding, increasing the genetic diversity of G. hirsutum. The substitution of certain G. hirsutum L. chromosomes with G. barbadense chromosomes affect fibre elongation, fibre yield, fibre strength, and micronaire. To increase the efficiency of creating lines, it is necessary to study the nature of the introgression of alien chromosomes into the G. hirsutum L. genome. As a result of molecular genetic analysis of BC2F1 hybrids obtained from crossing monosomic lines of the cotton G. hirsutum from the cytogenetic collection of Uzbekistan with monosomic backcross hybrids BC1F1 G. hirsutum × G. barbadense on the same chromosomes, genetic differences between the hybrids in the profile of chromosome-specific microsatellite SSR markers were found. The predominant introgression of chromosomes 4, 6 and 12 of the At-subgenome and 22 of the Dt-subgenome of G. barbadense was revealed, while chromosomes 2 and 7 of the At-subgenome and 18 of the Dt- subgenome of G. barbadense were characterized by elimination. Among them, chromosomes 7 of the At- subgenome and 18 of the Dt-subgenome of G. barbadense were eliminated in the first backcross generation. In this work, two lines, CS- B06 and CS-B07, from the American cytogenetic collection with a putative substitution involving chromosomes 6 and 7 of the At-subgenome were analysed. The presence of only polymorphic alleles from the species G. hirsutum and the absence of polymorphic alleles from the species G. barbadense were revealed, which showed the absence of substitution involving these chromosomes. BC2F1 hybrids with monosomy for both G. barbadense and G. hirsutum chromosomes were characterized by regular pairing of chromosomes and high meiotic indexes. However, many hybrids were characterized by a decrease in pollen fertility. Two hybrids with monosomy for chromosome 7 of the At-subgenome of G. hirsutum and chromosome 6 of the At-subgenome of G. barbadense had the greatest reduction in pollen viability (70.09 ± 1.57 and 75.00 ± 1.66 %, respectively). Thus, this work shows a specific feature in the introgression of individual chromosomes of the cotton species G. barbadense into the cotton G. hirsutum genome.</p>\",\"PeriodicalId\":44339,\"journal\":{\"name\":\"Vavilovskii Zhurnal Genetiki i Selektsii\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10792509/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vavilovskii Zhurnal Genetiki i Selektsii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18699/VJGB-23-110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vavilovskii Zhurnal Genetiki i Selektsii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18699/VJGB-23-110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
棉花 Gossypium hirsutum L. 的替代系涉及四倍体物种 G. barbadense L.、G. tomentosum Nutt.将某些 G. hirsutum L. 染色体替换为 G. barbadense 染色体会影响纤维伸长率、纤维产量、纤维强度和细度。为了提高培育品系的效率,有必要研究外来染色体引入 G. hirsutum L. 基因组的性质。对乌兹别克斯坦细胞遗传学收集的棉花 G. hirsutum 单体品系与同一染色体上的单体回交杂交种 BC1F1 G. hirsutum × G. barbadense 杂交获得的 BC2F1 杂交种进行分子遗传分析的结果显示,杂交种之间在染色体特异性微卫星 SSR 标记方面存在遗传差异。结果表明,G. barbadense的At亚基因组的4、6和12号染色体以及Dt亚基因组的22号染色体具有主要的导入性,而G. barbadense的At亚基因组的2和7号染色体以及Dt亚基因组的18号染色体则具有淘汰性。其中,G. barbadense 的 At-亚基因组的 7 号染色体和 Dt-亚基因组的 18 号染色体在第一代回交中被淘汰。在这项工作中,分析了来自美国细胞遗传学收集的两个品系 CS- B06 和 CS-B07,这两个品系的 At 亚基因组 6 号和 7 号染色体可能发生了替换。结果发现,只有来自 G. hirsutum 品种的多态等位基因,而没有来自 G. barbadense 品种的多态等位基因,这表明这些染色体没有发生替换。同时具有 G. barbadense 和 G. hirsutum 染色体单体性的 BC2F1 杂交种具有染色体配对规则和减数分裂指数高的特点。然而,许多杂交种的花粉育性降低。两个杂交种的花粉活力下降幅度最大(分别为 70.09 ± 1.57 % 和 75.00 ± 1.66 %),这两个杂交种分别具有 G. hirsutum 的 At 亚基因组 7 号染色体和 G. barbadense 的 At 亚基因组 6 号染色体单体。因此,这项研究显示了棉花物种 G. barbadense 的单条染色体导入棉花 G. hirsutum 基因组的特殊性。
Molecular-genetic and cytogenetic analyses of cotton chromosome introgression from Gossypium barbadense L. into the genome of G. hirsutum L. in BC2F1 hybrids.
Substitution lines of the cotton Gossypium hirsutum L. involving chromosomes of the tetraploid species G. barbadense L., G. tomentosum Nutt. ex Seem., and G. mustelinum Miers ex Watt. are a valuable source for breeding, increasing the genetic diversity of G. hirsutum. The substitution of certain G. hirsutum L. chromosomes with G. barbadense chromosomes affect fibre elongation, fibre yield, fibre strength, and micronaire. To increase the efficiency of creating lines, it is necessary to study the nature of the introgression of alien chromosomes into the G. hirsutum L. genome. As a result of molecular genetic analysis of BC2F1 hybrids obtained from crossing monosomic lines of the cotton G. hirsutum from the cytogenetic collection of Uzbekistan with monosomic backcross hybrids BC1F1 G. hirsutum × G. barbadense on the same chromosomes, genetic differences between the hybrids in the profile of chromosome-specific microsatellite SSR markers were found. The predominant introgression of chromosomes 4, 6 and 12 of the At-subgenome and 22 of the Dt-subgenome of G. barbadense was revealed, while chromosomes 2 and 7 of the At-subgenome and 18 of the Dt- subgenome of G. barbadense were characterized by elimination. Among them, chromosomes 7 of the At- subgenome and 18 of the Dt-subgenome of G. barbadense were eliminated in the first backcross generation. In this work, two lines, CS- B06 and CS-B07, from the American cytogenetic collection with a putative substitution involving chromosomes 6 and 7 of the At-subgenome were analysed. The presence of only polymorphic alleles from the species G. hirsutum and the absence of polymorphic alleles from the species G. barbadense were revealed, which showed the absence of substitution involving these chromosomes. BC2F1 hybrids with monosomy for both G. barbadense and G. hirsutum chromosomes were characterized by regular pairing of chromosomes and high meiotic indexes. However, many hybrids were characterized by a decrease in pollen fertility. Two hybrids with monosomy for chromosome 7 of the At-subgenome of G. hirsutum and chromosome 6 of the At-subgenome of G. barbadense had the greatest reduction in pollen viability (70.09 ± 1.57 and 75.00 ± 1.66 %, respectively). Thus, this work shows a specific feature in the introgression of individual chromosomes of the cotton species G. barbadense into the cotton G. hirsutum genome.
期刊介绍:
The "Vavilov Journal of genetics and breeding" publishes original research and review articles in all key areas of modern plant, animal and human genetics, genomics, bioinformatics and biotechnology. One of the main objectives of the journal is integration of theoretical and applied research in the field of genetics. Special attention is paid to the most topical areas in modern genetics dealing with global concerns such as food security and human health.