{"title":"通过 MM-GBSA 从结构上洞察治疗阿尔茨海默病的重定位药物和已知药物与母鸡蛋清溶菌酶的相互作用。","authors":"Amit Kumar Halder, Puja Mishra, Souvik Basak, Debjani Roy, Anurag Das, Sucheta Karmakar, Ritam Mondal, Shrestha Banerjee, Prakarsha De, Ankit Chatterjee, Susmita Mallick, Abhijit Hazra","doi":"10.1080/07391102.2024.2305697","DOIUrl":null,"url":null,"abstract":"<p><p>Six drugs (dapsone, diltiazem, timolol, rosiglitazone, mesalazine, and milnacipran) that were predicted by network-based polypharmacology approaches as potential anti-Alzheimer's drugs, have been subjected in this study for <i>in silico</i> and <i>in vitro</i> evaluation to check their potential against protein fibrillation, which is a causative factor for multiple diseases such as Alzheimer's disease, Parkinson's disease, Huntington disease, cardiac myopathy, type-II diabetes mellitus and many others. Molecular docking and thereafter molecular dynamics (MD) simulations revealed that diltiazem, rosiglitazone, and milnacipran interact with the binding residues such as Asp52, Glu35, Trp62, and Asp101, which lie within the fibrillating region of HEWL. The MM-GBSA analysis revealed -7.86, -5.05, and -10.29 kcal/mol as the binding energy of diltiazem, rosiglitazone, and milnacipran. The RMSD and RMSF calculations revealed significant stabilities of these ligands within the binding pocket of HEWL. While compared with two reported ligands inhibiting HEWL fibrillation, milnacipran depicted almost similar binding potential with one of the known ligands (Ligand binding affinity -10.66 kcal/mol) of HEWL. Furthermore, secondary structure analyses revealed notable inhibition of the secondary structural changes with our candidate ligand; especially regarding retention of the 3/10 α-helix both by DSSP simulation, Circular dichroism, and FESEM-based microscopic image analyses. Taking further into experimental validation, all three ligands inhibited fibrillation in HEWL in simulated conditions as revealed by blue shift in Congo red assay and later expressing percentage inhibition in ThioflavinT assay as well. However, dose-dependent kinetics revealed that the antifibrillatory effects of drugs are more pronounced at low protein concentrations.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"4629-4647"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural insights into the interactions of repositioning and known drugs for Alzheimer's disease with hen egg white lysozyme by MM-GBSA.\",\"authors\":\"Amit Kumar Halder, Puja Mishra, Souvik Basak, Debjani Roy, Anurag Das, Sucheta Karmakar, Ritam Mondal, Shrestha Banerjee, Prakarsha De, Ankit Chatterjee, Susmita Mallick, Abhijit Hazra\",\"doi\":\"10.1080/07391102.2024.2305697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Six drugs (dapsone, diltiazem, timolol, rosiglitazone, mesalazine, and milnacipran) that were predicted by network-based polypharmacology approaches as potential anti-Alzheimer's drugs, have been subjected in this study for <i>in silico</i> and <i>in vitro</i> evaluation to check their potential against protein fibrillation, which is a causative factor for multiple diseases such as Alzheimer's disease, Parkinson's disease, Huntington disease, cardiac myopathy, type-II diabetes mellitus and many others. Molecular docking and thereafter molecular dynamics (MD) simulations revealed that diltiazem, rosiglitazone, and milnacipran interact with the binding residues such as Asp52, Glu35, Trp62, and Asp101, which lie within the fibrillating region of HEWL. The MM-GBSA analysis revealed -7.86, -5.05, and -10.29 kcal/mol as the binding energy of diltiazem, rosiglitazone, and milnacipran. The RMSD and RMSF calculations revealed significant stabilities of these ligands within the binding pocket of HEWL. While compared with two reported ligands inhibiting HEWL fibrillation, milnacipran depicted almost similar binding potential with one of the known ligands (Ligand binding affinity -10.66 kcal/mol) of HEWL. Furthermore, secondary structure analyses revealed notable inhibition of the secondary structural changes with our candidate ligand; especially regarding retention of the 3/10 α-helix both by DSSP simulation, Circular dichroism, and FESEM-based microscopic image analyses. Taking further into experimental validation, all three ligands inhibited fibrillation in HEWL in simulated conditions as revealed by blue shift in Congo red assay and later expressing percentage inhibition in ThioflavinT assay as well. However, dose-dependent kinetics revealed that the antifibrillatory effects of drugs are more pronounced at low protein concentrations.</p>\",\"PeriodicalId\":15272,\"journal\":{\"name\":\"Journal of Biomolecular Structure & Dynamics\",\"volume\":\" \",\"pages\":\"4629-4647\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure & Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2024.2305697\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2305697","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Structural insights into the interactions of repositioning and known drugs for Alzheimer's disease with hen egg white lysozyme by MM-GBSA.
Six drugs (dapsone, diltiazem, timolol, rosiglitazone, mesalazine, and milnacipran) that were predicted by network-based polypharmacology approaches as potential anti-Alzheimer's drugs, have been subjected in this study for in silico and in vitro evaluation to check their potential against protein fibrillation, which is a causative factor for multiple diseases such as Alzheimer's disease, Parkinson's disease, Huntington disease, cardiac myopathy, type-II diabetes mellitus and many others. Molecular docking and thereafter molecular dynamics (MD) simulations revealed that diltiazem, rosiglitazone, and milnacipran interact with the binding residues such as Asp52, Glu35, Trp62, and Asp101, which lie within the fibrillating region of HEWL. The MM-GBSA analysis revealed -7.86, -5.05, and -10.29 kcal/mol as the binding energy of diltiazem, rosiglitazone, and milnacipran. The RMSD and RMSF calculations revealed significant stabilities of these ligands within the binding pocket of HEWL. While compared with two reported ligands inhibiting HEWL fibrillation, milnacipran depicted almost similar binding potential with one of the known ligands (Ligand binding affinity -10.66 kcal/mol) of HEWL. Furthermore, secondary structure analyses revealed notable inhibition of the secondary structural changes with our candidate ligand; especially regarding retention of the 3/10 α-helix both by DSSP simulation, Circular dichroism, and FESEM-based microscopic image analyses. Taking further into experimental validation, all three ligands inhibited fibrillation in HEWL in simulated conditions as revealed by blue shift in Congo red assay and later expressing percentage inhibition in ThioflavinT assay as well. However, dose-dependent kinetics revealed that the antifibrillatory effects of drugs are more pronounced at low protein concentrations.
期刊介绍:
The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.