从数字健康到学习型健康系统:利用数据进行数字健康设计的四种方法。

IF 1.2 Q4 HEALTH POLICY & SERVICES
Health Systems Pub Date : 2024-01-13 eCollection Date: 2023-01-01 DOI:10.1080/20476965.2023.2284712
Valeria Pannunzio, Maaike Kleinsmann, Dirk Snelders, Jeroen Raijmakers
{"title":"从数字健康到学习型健康系统:利用数据进行数字健康设计的四种方法。","authors":"Valeria Pannunzio, Maaike Kleinsmann, Dirk Snelders, Jeroen Raijmakers","doi":"10.1080/20476965.2023.2284712","DOIUrl":null,"url":null,"abstract":"<p><p>Digital health technologies, powered by digital data, provide an opportunity to improve the efficacy and efficiency of health systems at large. However, little is known about different approaches to the use of data for digital health design, or about their possible relations to system-level dynamics. In this contribution, we identify four existing approaches to the use of data for digital health design, namely the silent, the overt, the data-enabled, and the convergent. After characterising the approaches, we provide real-life examples of each. Furthermore, we compare the approaches in terms of selected desirable characteristics of the design process, highlighting relative advantages and disadvantages. Finally, we reflect on the system-level relevance of the differentiation between the approaches and point towards future research directions. Overall, the contribution provides researchers and practitioners with a broad conceptual framework to examine data-related challenges and opportunities in digital health design.</p>","PeriodicalId":44699,"journal":{"name":"Health Systems","volume":"12 4","pages":"481-494"},"PeriodicalIF":1.2000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10791080/pdf/","citationCount":"0","resultStr":"{\"title\":\"From digital health to learning health systems: four approaches to using data for digital health design.\",\"authors\":\"Valeria Pannunzio, Maaike Kleinsmann, Dirk Snelders, Jeroen Raijmakers\",\"doi\":\"10.1080/20476965.2023.2284712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Digital health technologies, powered by digital data, provide an opportunity to improve the efficacy and efficiency of health systems at large. However, little is known about different approaches to the use of data for digital health design, or about their possible relations to system-level dynamics. In this contribution, we identify four existing approaches to the use of data for digital health design, namely the silent, the overt, the data-enabled, and the convergent. After characterising the approaches, we provide real-life examples of each. Furthermore, we compare the approaches in terms of selected desirable characteristics of the design process, highlighting relative advantages and disadvantages. Finally, we reflect on the system-level relevance of the differentiation between the approaches and point towards future research directions. Overall, the contribution provides researchers and practitioners with a broad conceptual framework to examine data-related challenges and opportunities in digital health design.</p>\",\"PeriodicalId\":44699,\"journal\":{\"name\":\"Health Systems\",\"volume\":\"12 4\",\"pages\":\"481-494\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10791080/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/20476965.2023.2284712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"HEALTH POLICY & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20476965.2023.2284712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"HEALTH POLICY & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

由数字数据驱动的数字医疗技术为提高整个医疗系统的功效和效率提供了机会。然而,人们对利用数据进行数字医疗设计的不同方法,或它们与系统层面动态的可能关系知之甚少。在本文中,我们确定了四种将数据用于数字医疗设计的现有方法,即静默型、公开型、数据化型和融合型。在描述了这些方法的特点后,我们提供了每种方法的真实案例。此外,我们还从设计过程的选定理想特征方面对各种方法进行了比较,并强调了相对优势和劣势。最后,我们思考了这些方法之间的差异在系统层面上的相关性,并指出了未来的研究方向。总之,本文为研究人员和从业人员提供了一个广泛的概念框架,用于研究数字医疗设计中与数据相关的挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From digital health to learning health systems: four approaches to using data for digital health design.

Digital health technologies, powered by digital data, provide an opportunity to improve the efficacy and efficiency of health systems at large. However, little is known about different approaches to the use of data for digital health design, or about their possible relations to system-level dynamics. In this contribution, we identify four existing approaches to the use of data for digital health design, namely the silent, the overt, the data-enabled, and the convergent. After characterising the approaches, we provide real-life examples of each. Furthermore, we compare the approaches in terms of selected desirable characteristics of the design process, highlighting relative advantages and disadvantages. Finally, we reflect on the system-level relevance of the differentiation between the approaches and point towards future research directions. Overall, the contribution provides researchers and practitioners with a broad conceptual framework to examine data-related challenges and opportunities in digital health design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Health Systems
Health Systems HEALTH POLICY & SERVICES-
CiteScore
4.20
自引率
11.10%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信