基于深度学习的肱骨髁定位超声图像骨软骨炎检测

IF 2.3 3区 医学 Q3 ENGINEERING, BIOMEDICAL
Kenta Sasaki, Daisuke Fujita, Kenta Takatsuji, Yoshihiro Kotoura, Masataka Minami, Yusuke Kobayashi, Tsuyoshi Sukenari, Yoshikazu Kida, Kenji Takahashi, Syoji Kobashi
{"title":"基于深度学习的肱骨髁定位超声图像骨软骨炎检测","authors":"Kenta Sasaki, Daisuke Fujita, Kenta Takatsuji, Yoshihiro Kotoura, Masataka Minami, Yusuke Kobayashi, Tsuyoshi Sukenari, Yoshikazu Kida, Kenji Takahashi, Syoji Kobashi","doi":"10.1007/s11548-023-03040-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Osteochondritis dissecans (OCD) of the humeral capitellum is a common cause of elbow disorders, particularly among young throwing athletes. Conservative treatment is the preferred treatment for managing OCD, and early intervention significantly influences the possibility of complete disease resolution. The purpose of this study is to develop a deep learning-based classification model in ultrasound images for computer-aided diagnosis.</p><p><strong>Methods: </strong>This paper proposes a deep learning-based OCD classification method in ultrasound images. The proposed method first detects the humeral capitellum detection using YOLO and then estimates the OCD probability of the detected region probability using VGG16. We hypothesis that the performance will be improved by eliminating unnecessary regions. To validate the performance of the proposed method, it was applied to 158 subjects (OCD: 67, Normal: 91) using five-fold-cross-validation.</p><p><strong>Results: </strong>The study demonstrated that the humeral capitellum detection achieved a mean average precision (mAP) of over 0.95, while OCD probability estimation achieved an average accuracy of 0.890, precision of 0.888, recall of 0.927, F1 score of 0.894, and an area under the curve (AUC) of 0.962. On the other hand, when the classification model was constructed for the entire image, accuracy, precision, recall, F1 score, and AUC were 0.806, 0.806, 0.932, 0.843, and 0.928, respectively. The findings suggest the high-performance potential of the proposed model for OCD classification in ultrasonic images.</p><p><strong>Conclusion: </strong>This paper introduces a deep learning-based OCD classification method. The experimental results emphasize the effectiveness of focusing on the humeral capitellum for OCD classification in ultrasound images. Future work should involve evaluating the effectiveness of employing the proposed method by physicians during medical check-ups for OCD.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":"2143-2152"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541362/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based osteochondritis dissecans detection in ultrasound images with humeral capitellum localization.\",\"authors\":\"Kenta Sasaki, Daisuke Fujita, Kenta Takatsuji, Yoshihiro Kotoura, Masataka Minami, Yusuke Kobayashi, Tsuyoshi Sukenari, Yoshikazu Kida, Kenji Takahashi, Syoji Kobashi\",\"doi\":\"10.1007/s11548-023-03040-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Osteochondritis dissecans (OCD) of the humeral capitellum is a common cause of elbow disorders, particularly among young throwing athletes. Conservative treatment is the preferred treatment for managing OCD, and early intervention significantly influences the possibility of complete disease resolution. The purpose of this study is to develop a deep learning-based classification model in ultrasound images for computer-aided diagnosis.</p><p><strong>Methods: </strong>This paper proposes a deep learning-based OCD classification method in ultrasound images. The proposed method first detects the humeral capitellum detection using YOLO and then estimates the OCD probability of the detected region probability using VGG16. We hypothesis that the performance will be improved by eliminating unnecessary regions. To validate the performance of the proposed method, it was applied to 158 subjects (OCD: 67, Normal: 91) using five-fold-cross-validation.</p><p><strong>Results: </strong>The study demonstrated that the humeral capitellum detection achieved a mean average precision (mAP) of over 0.95, while OCD probability estimation achieved an average accuracy of 0.890, precision of 0.888, recall of 0.927, F1 score of 0.894, and an area under the curve (AUC) of 0.962. On the other hand, when the classification model was constructed for the entire image, accuracy, precision, recall, F1 score, and AUC were 0.806, 0.806, 0.932, 0.843, and 0.928, respectively. The findings suggest the high-performance potential of the proposed model for OCD classification in ultrasonic images.</p><p><strong>Conclusion: </strong>This paper introduces a deep learning-based OCD classification method. The experimental results emphasize the effectiveness of focusing on the humeral capitellum for OCD classification in ultrasound images. Future work should involve evaluating the effectiveness of employing the proposed method by physicians during medical check-ups for OCD.</p>\",\"PeriodicalId\":51251,\"journal\":{\"name\":\"International Journal of Computer Assisted Radiology and Surgery\",\"volume\":\" \",\"pages\":\"2143-2152\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541362/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Assisted Radiology and Surgery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11548-023-03040-8\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-023-03040-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:肱骨髌骨骨软骨炎(OCD)是肘关节疾病的常见病因,尤其是在年轻的投掷运动员中。保守治疗是控制 OCD 的首选治疗方法,早期干预可显著提高疾病完全治愈的可能性。本研究旨在开发一种基于深度学习的超声图像分类模型,用于计算机辅助诊断:本文提出了一种基于深度学习的超声图像强迫症分类方法。方法:本文提出了一种基于深度学习的超声图像 OCD 分类方法。该方法首先使用 YOLO 检测肱骨岬,然后使用 VGG16 估计检测区域的 OCD 概率。我们假设,通过消除不必要的区域,该方法的性能将得到改善。为了验证所提方法的性能,我们使用五倍交叉验证法对 158 名受试者(OCD:67 人,Normal:91 人)进行了测试:研究表明,肱骨岬检测的平均精确度(mAP)超过了 0.95,而 OCD 概率估计的平均准确度为 0.890,精确度为 0.888,召回率为 0.927,F1 分数为 0.894,曲线下面积(AUC)为 0.962。另一方面,当为整个图像构建分类模型时,准确率、精确度、召回率、F1 分数和 AUC 分别为 0.806、0.806、0.932、0.843 和 0.928。研究结果表明,所提出的模型在超声波图像中的 OCD 分类方面具有很高的性能潜力:本文介绍了一种基于深度学习的 OCD 分类方法。实验结果表明,聚焦肱骨岬对超声图像中的 OCD 分类非常有效。未来的工作应包括评估医生在对 OCD 进行体检时采用所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deep learning-based osteochondritis dissecans detection in ultrasound images with humeral capitellum localization.

Deep learning-based osteochondritis dissecans detection in ultrasound images with humeral capitellum localization.

Purpose: Osteochondritis dissecans (OCD) of the humeral capitellum is a common cause of elbow disorders, particularly among young throwing athletes. Conservative treatment is the preferred treatment for managing OCD, and early intervention significantly influences the possibility of complete disease resolution. The purpose of this study is to develop a deep learning-based classification model in ultrasound images for computer-aided diagnosis.

Methods: This paper proposes a deep learning-based OCD classification method in ultrasound images. The proposed method first detects the humeral capitellum detection using YOLO and then estimates the OCD probability of the detected region probability using VGG16. We hypothesis that the performance will be improved by eliminating unnecessary regions. To validate the performance of the proposed method, it was applied to 158 subjects (OCD: 67, Normal: 91) using five-fold-cross-validation.

Results: The study demonstrated that the humeral capitellum detection achieved a mean average precision (mAP) of over 0.95, while OCD probability estimation achieved an average accuracy of 0.890, precision of 0.888, recall of 0.927, F1 score of 0.894, and an area under the curve (AUC) of 0.962. On the other hand, when the classification model was constructed for the entire image, accuracy, precision, recall, F1 score, and AUC were 0.806, 0.806, 0.932, 0.843, and 0.928, respectively. The findings suggest the high-performance potential of the proposed model for OCD classification in ultrasonic images.

Conclusion: This paper introduces a deep learning-based OCD classification method. The experimental results emphasize the effectiveness of focusing on the humeral capitellum for OCD classification in ultrasound images. Future work should involve evaluating the effectiveness of employing the proposed method by physicians during medical check-ups for OCD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Assisted Radiology and Surgery
International Journal of Computer Assisted Radiology and Surgery ENGINEERING, BIOMEDICAL-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
5.90
自引率
6.70%
发文量
243
审稿时长
6-12 weeks
期刊介绍: The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信