{"title":"针对人类 T 型淋巴细胞病毒-1 型的整合酶抑制剂的再利用:一种计算方法。","authors":"Prashasti Sinha, Anil Kumar Yadav","doi":"10.1080/07391102.2024.2304681","DOIUrl":null,"url":null,"abstract":"<p><p>Adult T-cell Lymphoma (ATL) is caused by the delta retrovirus family member known as Human T-cell Leukaemia Type I (HTLV-1). Due to the unavailability of any cure, the study gained motivation to identify some repurposed drugs against the virus. A quick and accurate method of screening licensed medications for finding a treatment for HTLV-1 is by cheminformatics drug repurposing in order to analyze a dataset of FDA approved integrase antivirals against HTLV-1 infection. To determine how the antiviral medications interacted with the important residues in the HTLV-1 integrase active regions, molecular docking modeling was used. The steady behavior of the ligands inside the active region was then confirmed by molecular dynamics for the probable receptor-drug complexes. Cabotegravir, Raltegravir and Elvitegravir had the best docking scores with the target, indicating that they can tightly bind to the HTLV-1 integrase. Moreover, MD simulation revealed that the Cabotegravir-HTLV-1, Raltegravir-HTLV-1 and Elvitegravir-HTLV-1 interactions were stable. It is obvious that more testing of these medicines in both clinical trials and experimental tests is necessary to demonstrate their efficacy against HTLV-1 infection.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"4686-4697"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Repurposing integrase inhibitors against human T-lymphotropic virus type-1: a computational approach.\",\"authors\":\"Prashasti Sinha, Anil Kumar Yadav\",\"doi\":\"10.1080/07391102.2024.2304681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adult T-cell Lymphoma (ATL) is caused by the delta retrovirus family member known as Human T-cell Leukaemia Type I (HTLV-1). Due to the unavailability of any cure, the study gained motivation to identify some repurposed drugs against the virus. A quick and accurate method of screening licensed medications for finding a treatment for HTLV-1 is by cheminformatics drug repurposing in order to analyze a dataset of FDA approved integrase antivirals against HTLV-1 infection. To determine how the antiviral medications interacted with the important residues in the HTLV-1 integrase active regions, molecular docking modeling was used. The steady behavior of the ligands inside the active region was then confirmed by molecular dynamics for the probable receptor-drug complexes. Cabotegravir, Raltegravir and Elvitegravir had the best docking scores with the target, indicating that they can tightly bind to the HTLV-1 integrase. Moreover, MD simulation revealed that the Cabotegravir-HTLV-1, Raltegravir-HTLV-1 and Elvitegravir-HTLV-1 interactions were stable. It is obvious that more testing of these medicines in both clinical trials and experimental tests is necessary to demonstrate their efficacy against HTLV-1 infection.</p>\",\"PeriodicalId\":15272,\"journal\":{\"name\":\"Journal of Biomolecular Structure & Dynamics\",\"volume\":\" \",\"pages\":\"4686-4697\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure & Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2024.2304681\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2304681","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Repurposing integrase inhibitors against human T-lymphotropic virus type-1: a computational approach.
Adult T-cell Lymphoma (ATL) is caused by the delta retrovirus family member known as Human T-cell Leukaemia Type I (HTLV-1). Due to the unavailability of any cure, the study gained motivation to identify some repurposed drugs against the virus. A quick and accurate method of screening licensed medications for finding a treatment for HTLV-1 is by cheminformatics drug repurposing in order to analyze a dataset of FDA approved integrase antivirals against HTLV-1 infection. To determine how the antiviral medications interacted with the important residues in the HTLV-1 integrase active regions, molecular docking modeling was used. The steady behavior of the ligands inside the active region was then confirmed by molecular dynamics for the probable receptor-drug complexes. Cabotegravir, Raltegravir and Elvitegravir had the best docking scores with the target, indicating that they can tightly bind to the HTLV-1 integrase. Moreover, MD simulation revealed that the Cabotegravir-HTLV-1, Raltegravir-HTLV-1 and Elvitegravir-HTLV-1 interactions were stable. It is obvious that more testing of these medicines in both clinical trials and experimental tests is necessary to demonstrate their efficacy against HTLV-1 infection.
期刊介绍:
The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.