萤火虫大鼠:照亮移植研究的科学共同体。

IF 3.2 4区 医学 Q3 CELL & TISSUE ENGINEERING
Eiji Kobayashi, Yoji Hakamata, Shin Enosawa, Kuang-Ming Shang, Hirotake Komatsu
{"title":"萤火虫大鼠:照亮移植研究的科学共同体。","authors":"Eiji Kobayashi, Yoji Hakamata, Shin Enosawa, Kuang-Ming Shang, Hirotake Komatsu","doi":"10.1177/09636897231224174","DOIUrl":null,"url":null,"abstract":"<p><p>Fireflies produce light through luciferase-catalyzed reactions involving luciferin, oxygen, and adenosine triphosphate, distinct from other luminescent organisms. This unique feature has revolutionized molecular biology and physiology, serving as a valuable tool for cellular research. Luciferase-based bioluminescent imaging enabled the creation of transgenic animals, such as Firefly Rats. Firefly Rats, created in 2006, ubiquitously express luciferase and have become a critical asset in scientific investigations. These rats have significantly contributed to transplantation and tissue engineering studies. Their low immunogenicity reduces graft rejection risk, making them ideal for long-term tracking of organ/tissue/cellular engraftments. Importantly, in the islet transplantation setting, the ubiquitous luciferase expression in these rats does not alter islet morphology or function, ensuring accurate assessments of engrafted islets. Firefly Rats have illuminated the path of transplantation research worldwide for over a decade and continue accelerating scientific advancements in many fields.</p>","PeriodicalId":9721,"journal":{"name":"Cell Transplantation","volume":"33 ","pages":"9636897231224174"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10798091/pdf/","citationCount":"0","resultStr":"{\"title\":\"Firefly Rats: Illuminating the Scientific Community in Transplantation Research.\",\"authors\":\"Eiji Kobayashi, Yoji Hakamata, Shin Enosawa, Kuang-Ming Shang, Hirotake Komatsu\",\"doi\":\"10.1177/09636897231224174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fireflies produce light through luciferase-catalyzed reactions involving luciferin, oxygen, and adenosine triphosphate, distinct from other luminescent organisms. This unique feature has revolutionized molecular biology and physiology, serving as a valuable tool for cellular research. Luciferase-based bioluminescent imaging enabled the creation of transgenic animals, such as Firefly Rats. Firefly Rats, created in 2006, ubiquitously express luciferase and have become a critical asset in scientific investigations. These rats have significantly contributed to transplantation and tissue engineering studies. Their low immunogenicity reduces graft rejection risk, making them ideal for long-term tracking of organ/tissue/cellular engraftments. Importantly, in the islet transplantation setting, the ubiquitous luciferase expression in these rats does not alter islet morphology or function, ensuring accurate assessments of engrafted islets. Firefly Rats have illuminated the path of transplantation research worldwide for over a decade and continue accelerating scientific advancements in many fields.</p>\",\"PeriodicalId\":9721,\"journal\":{\"name\":\"Cell Transplantation\",\"volume\":\"33 \",\"pages\":\"9636897231224174\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10798091/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Transplantation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/09636897231224174\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Transplantation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09636897231224174","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

萤火虫通过荧光素酶催化的反应产生光,这些反应涉及荧光素、氧气和三磷酸腺苷,与其他发光生物不同。这一独特的功能给分子生物学和生理学带来了革命性的变化,成为细胞研究的重要工具。基于荧光素酶的生物发光成像技术使转基因动物得以诞生,如萤火虫鼠。萤火虫大鼠于 2006 年诞生,可普遍表达荧光素酶,已成为科学研究的重要资产。这些老鼠为移植和组织工程研究做出了重大贡献。它们的免疫原性低,降低了移植排斥风险,是长期跟踪器官/组织/细胞移植的理想选择。重要的是,在胰岛移植中,这些大鼠体内无处不在的荧光素酶表达不会改变胰岛的形态或功能,从而确保了对移植胰岛的准确评估。十多年来,萤火虫大鼠照亮了全球移植研究的道路,并不断加速许多领域的科学进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Firefly Rats: Illuminating the Scientific Community in Transplantation Research.

Fireflies produce light through luciferase-catalyzed reactions involving luciferin, oxygen, and adenosine triphosphate, distinct from other luminescent organisms. This unique feature has revolutionized molecular biology and physiology, serving as a valuable tool for cellular research. Luciferase-based bioluminescent imaging enabled the creation of transgenic animals, such as Firefly Rats. Firefly Rats, created in 2006, ubiquitously express luciferase and have become a critical asset in scientific investigations. These rats have significantly contributed to transplantation and tissue engineering studies. Their low immunogenicity reduces graft rejection risk, making them ideal for long-term tracking of organ/tissue/cellular engraftments. Importantly, in the islet transplantation setting, the ubiquitous luciferase expression in these rats does not alter islet morphology or function, ensuring accurate assessments of engrafted islets. Firefly Rats have illuminated the path of transplantation research worldwide for over a decade and continue accelerating scientific advancements in many fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Transplantation
Cell Transplantation 生物-细胞与组织工程
CiteScore
6.00
自引率
3.00%
发文量
97
审稿时长
6 months
期刊介绍: Cell Transplantation, The Regenerative Medicine Journal is an open access, peer reviewed journal that is published 12 times annually. Cell Transplantation is a multi-disciplinary forum for publication of articles on cell transplantation and its applications to human diseases. Articles focus on a myriad of topics including the physiological, medical, pre-clinical, tissue engineering, stem cell, and device-oriented aspects of the nervous, endocrine, cardiovascular, and endothelial systems, as well as genetically engineered cells. Cell Transplantation also reports on relevant technological advances, clinical studies, and regulatory considerations related to the implantation of cells into the body in order to provide complete coverage of the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信