碳结构/孔隙率对锂硫电池电化学性能的影响

Barbora Pitňa Lásková, Markéta Zukalová, Monika Vinarčíková, Ladislav Kavan
{"title":"碳结构/孔隙率对锂硫电池电化学性能的影响","authors":"Barbora Pitňa Lásková, Markéta Zukalová, Monika Vinarčíková, Ladislav Kavan","doi":"10.1007/s00706-023-03160-6","DOIUrl":null,"url":null,"abstract":"<p>The porous structure of three different, commercially available porous carbonaceous materials is investigated by the <i>α</i><sub>S</sub>-plot method and by the <i>t</i>-plot method. Subsequently, the electrochemical properties of sulfur-free porous carbon electrodes from inspected materials are studied by cyclic voltammetry. The comparison of double-layer capacitances with the corresponding adsorption isotherms of N<sub>2</sub> reveals the role of micropores during the capacitive charging of carbons by Li<sup>+</sup>. The studied carbons are added to the sulfur cathodes and evaluated. The cyclic voltammograms show no contribution of micropores in the carbon structure to the electrochemical processes taking place in the lithium–sulfur coin cell. The highest specific capacity of 816 mAh/g is observed for material with the lowest content of micropores in the structure (14%). The partially mesoporous and partially microporous (65%) sample and the predominantly microporous one (87%), show specific capacities of 664 mAh/g and 560 mAh/g, respectively. The galvanostatic cycling of lithium–sulfur coin cells with carbonaceous additives reveals that the mesopores and macropores in the carbon structure increase the specific charge capacity of the lithium–sulfur batteries and that the micropores improve the cycling stability of these batteries.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":19011,"journal":{"name":"Monatshefte für Chemie / Chemical Monthly","volume":"156 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of carbon structure/porosity on the electrochemical performance in Li–sulfur batteries\",\"authors\":\"Barbora Pitňa Lásková, Markéta Zukalová, Monika Vinarčíková, Ladislav Kavan\",\"doi\":\"10.1007/s00706-023-03160-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The porous structure of three different, commercially available porous carbonaceous materials is investigated by the <i>α</i><sub>S</sub>-plot method and by the <i>t</i>-plot method. Subsequently, the electrochemical properties of sulfur-free porous carbon electrodes from inspected materials are studied by cyclic voltammetry. The comparison of double-layer capacitances with the corresponding adsorption isotherms of N<sub>2</sub> reveals the role of micropores during the capacitive charging of carbons by Li<sup>+</sup>. The studied carbons are added to the sulfur cathodes and evaluated. The cyclic voltammograms show no contribution of micropores in the carbon structure to the electrochemical processes taking place in the lithium–sulfur coin cell. The highest specific capacity of 816 mAh/g is observed for material with the lowest content of micropores in the structure (14%). The partially mesoporous and partially microporous (65%) sample and the predominantly microporous one (87%), show specific capacities of 664 mAh/g and 560 mAh/g, respectively. The galvanostatic cycling of lithium–sulfur coin cells with carbonaceous additives reveals that the mesopores and macropores in the carbon structure increase the specific charge capacity of the lithium–sulfur batteries and that the micropores improve the cycling stability of these batteries.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":19011,\"journal\":{\"name\":\"Monatshefte für Chemie / Chemical Monthly\",\"volume\":\"156 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monatshefte für Chemie / Chemical Monthly\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00706-023-03160-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Chemie / Chemical Monthly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00706-023-03160-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过 αS-plot 法和 t-plot 法研究了三种不同市售多孔碳质材料的多孔结构。随后,通过循环伏安法研究了受检材料的无硫多孔碳电极的电化学特性。双层电容与相应的 N2 吸附等温线的比较揭示了微孔在 Li+ 对碳进行电容充电过程中的作用。将所研究的碳加入硫阴极并进行评估。循环伏安图显示,碳结构中的微孔对锂硫纽扣电池中发生的电化学过程没有影响。结构中微孔含量最低(14%)的材料的比容量最高,达到 816 mAh/g。部分介孔和部分微孔(65%)以及主要微孔(87%)样品的比容量分别为 664 mAh/g 和 560 mAh/g。添加了碳质添加剂的锂硫纽扣电池的电静力循环显示,碳结构中的中孔和大孔提高了锂硫电池的比充电容量,而微孔则改善了这些电池的循环稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Influence of carbon structure/porosity on the electrochemical performance in Li–sulfur batteries

Influence of carbon structure/porosity on the electrochemical performance in Li–sulfur batteries

The porous structure of three different, commercially available porous carbonaceous materials is investigated by the αS-plot method and by the t-plot method. Subsequently, the electrochemical properties of sulfur-free porous carbon electrodes from inspected materials are studied by cyclic voltammetry. The comparison of double-layer capacitances with the corresponding adsorption isotherms of N2 reveals the role of micropores during the capacitive charging of carbons by Li+. The studied carbons are added to the sulfur cathodes and evaluated. The cyclic voltammograms show no contribution of micropores in the carbon structure to the electrochemical processes taking place in the lithium–sulfur coin cell. The highest specific capacity of 816 mAh/g is observed for material with the lowest content of micropores in the structure (14%). The partially mesoporous and partially microporous (65%) sample and the predominantly microporous one (87%), show specific capacities of 664 mAh/g and 560 mAh/g, respectively. The galvanostatic cycling of lithium–sulfur coin cells with carbonaceous additives reveals that the mesopores and macropores in the carbon structure increase the specific charge capacity of the lithium–sulfur batteries and that the micropores improve the cycling stability of these batteries.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信