自动 L 函数二次扭转的对数衍生物的值分布

IF 0.6 4区 数学 Q3 MATHEMATICS
Amir Akbary, Alia Hamieh
{"title":"自动 L 函数二次扭转的对数衍生物的值分布","authors":"Amir Akbary, Alia Hamieh","doi":"10.1093/qmath/haad042","DOIUrl":null,"url":null,"abstract":"Let $d\\in\\mathbb{N}$ and π be a fixed cuspidal automorphic representation of $\\mathrm{GL}_{d}(\\mathbb{A}_{\\mathbb{Q}})$ with unitary central character. We determine the limiting distribution of the family of values $-\\frac{L^{\\prime}}{L}(1+it,\\pi\\otimes\\chi_D)$ as D varies over fundamental discriminants. Here, t is a fixed real number and χD is the real character associated with D. We establish an upper bound on the discrepancy in the convergence of this family to its limiting distribution. As an application of this result, we obtain an upper bound on the small values of $\\left|\\frac{L^{\\prime}}{L}(1,\\pi\\otimes\\chi_D)\\right|$ when π is self-dual.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":"4 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Value Distribution of Logarithmic Derivatives of Quadratic Twists of Automorphic L-functions\",\"authors\":\"Amir Akbary, Alia Hamieh\",\"doi\":\"10.1093/qmath/haad042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $d\\\\in\\\\mathbb{N}$ and π be a fixed cuspidal automorphic representation of $\\\\mathrm{GL}_{d}(\\\\mathbb{A}_{\\\\mathbb{Q}})$ with unitary central character. We determine the limiting distribution of the family of values $-\\\\frac{L^{\\\\prime}}{L}(1+it,\\\\pi\\\\otimes\\\\chi_D)$ as D varies over fundamental discriminants. Here, t is a fixed real number and χD is the real character associated with D. We establish an upper bound on the discrepancy in the convergence of this family to its limiting distribution. As an application of this result, we obtain an upper bound on the small values of $\\\\left|\\\\frac{L^{\\\\prime}}{L}(1,\\\\pi\\\\otimes\\\\chi_D)\\\\right|$ when π is self-dual.\",\"PeriodicalId\":54522,\"journal\":{\"name\":\"Quarterly Journal of Mathematics\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/qmath/haad042\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/qmath/haad042","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 $d\in\mathbb{N}$ 和 π 是 $\mathrm{GL}_{d}(\mathbb{A}_\{mathbb{Q}})$ 的一个具有单元中心特征的固定的尖顶自定形表示。我们确定了当 D 随基本判别式变化时,$-\frac{L^{prime}}{L}(1+it,\pi\otimes\chi_D)$ 的值族的极限分布。这里,t 是一个固定实数,χD 是与 D 相关的实数特征。我们建立了这个族收敛到其极限分布的差异上限。作为这一结果的应用,我们得到了当π是自偶数时$\left|\frac{L^\{prime}}{L}(1,\pi\otimes\chi_D)\right|$的小值的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Value Distribution of Logarithmic Derivatives of Quadratic Twists of Automorphic L-functions
Let $d\in\mathbb{N}$ and π be a fixed cuspidal automorphic representation of $\mathrm{GL}_{d}(\mathbb{A}_{\mathbb{Q}})$ with unitary central character. We determine the limiting distribution of the family of values $-\frac{L^{\prime}}{L}(1+it,\pi\otimes\chi_D)$ as D varies over fundamental discriminants. Here, t is a fixed real number and χD is the real character associated with D. We establish an upper bound on the discrepancy in the convergence of this family to its limiting distribution. As an application of this result, we obtain an upper bound on the small values of $\left|\frac{L^{\prime}}{L}(1,\pi\otimes\chi_D)\right|$ when π is self-dual.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信