Hiroyuki Miyoshi, Henry Rodriguez-Broadbent, Darren G. Crowdy
{"title":"液体注入表面上的通道流分析公式的数值验证","authors":"Hiroyuki Miyoshi, Henry Rodriguez-Broadbent, Darren G. Crowdy","doi":"10.1007/s10665-023-10314-2","DOIUrl":null,"url":null,"abstract":"<p>This paper provides numerical validation of some new explicit, asymptotically exact, analytical formulas describing channel flows over liquid-infused surfaces, an important class of surfaces of current interest in surface engineering. The new asymptotic formulas, reproduced here, were derived in a recent companion paper by the authors. The numerical validation is done by presenting a novel computational method for calculating longitudinal flow in a periodic channel involving finite-length closed liquid-filled grooves with a flat two-fluid interface, a challenging problem given the two-fluid nature of the flow. The formulas are asymptotically exact for wide channels where the grooves on the lower wall of the channel are well separated; the numerical method devised here, however, is subject to no such restrictions. Significantly, it is shown here that the asymptotic formulas remain good global approximants for the flow over a wide range of flow geometries, including those well outside the asymptotic parameter range for which they were derived. It is found that the formulas are more reliable for liquid-infused surfaces than for superhydrophobic surfaces.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical validation of analytical formulas for channel flows over liquid-infused surfaces\",\"authors\":\"Hiroyuki Miyoshi, Henry Rodriguez-Broadbent, Darren G. Crowdy\",\"doi\":\"10.1007/s10665-023-10314-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper provides numerical validation of some new explicit, asymptotically exact, analytical formulas describing channel flows over liquid-infused surfaces, an important class of surfaces of current interest in surface engineering. The new asymptotic formulas, reproduced here, were derived in a recent companion paper by the authors. The numerical validation is done by presenting a novel computational method for calculating longitudinal flow in a periodic channel involving finite-length closed liquid-filled grooves with a flat two-fluid interface, a challenging problem given the two-fluid nature of the flow. The formulas are asymptotically exact for wide channels where the grooves on the lower wall of the channel are well separated; the numerical method devised here, however, is subject to no such restrictions. Significantly, it is shown here that the asymptotic formulas remain good global approximants for the flow over a wide range of flow geometries, including those well outside the asymptotic parameter range for which they were derived. It is found that the formulas are more reliable for liquid-infused surfaces than for superhydrophobic surfaces.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10665-023-10314-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-023-10314-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Numerical validation of analytical formulas for channel flows over liquid-infused surfaces
This paper provides numerical validation of some new explicit, asymptotically exact, analytical formulas describing channel flows over liquid-infused surfaces, an important class of surfaces of current interest in surface engineering. The new asymptotic formulas, reproduced here, were derived in a recent companion paper by the authors. The numerical validation is done by presenting a novel computational method for calculating longitudinal flow in a periodic channel involving finite-length closed liquid-filled grooves with a flat two-fluid interface, a challenging problem given the two-fluid nature of the flow. The formulas are asymptotically exact for wide channels where the grooves on the lower wall of the channel are well separated; the numerical method devised here, however, is subject to no such restrictions. Significantly, it is shown here that the asymptotic formulas remain good global approximants for the flow over a wide range of flow geometries, including those well outside the asymptotic parameter range for which they were derived. It is found that the formulas are more reliable for liquid-infused surfaces than for superhydrophobic surfaces.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.