城市水下盾构隧道围岩结构安全数值模拟研究:重庆案例

IF 1.2 4区 工程技术 Q3 ACOUSTICS
Zeng-Qiang Yang, Xiao-Ming You, Hui-Wu Jin
{"title":"城市水下盾构隧道围岩结构安全数值模拟研究:重庆案例","authors":"Zeng-Qiang Yang, Xiao-Ming You, Hui-Wu Jin","doi":"10.1155/2024/9285252","DOIUrl":null,"url":null,"abstract":"Based on the engineering background of shield construction of a subway section in Chongqing, which needs to pass through a park and there is a lake inside this park, this paper adopts theoretical analysis methods and numerical simulation calculation methods to explore the distribution law of the seepage field and the characteristics of water pressure in lining segments during shield tunneling. The results show that, during the whole excavation of a double-track tunnel with EPB shield, the maximum vertical effective stress is about 4.24 MPa, which is located at the arch foot of the tunnel. The maximum effective stress in the horizontal direction is about 3.61 MPa, which is located on both side walls of the tunnel in the horizontal direction; after the left and right tunnels are excavated in sequence, a “double precipitation funnel-shaped” pore pressure distribution is formed around the tunnel; during the construction of the shield tunnel, the vertical displacement and horizontal displacement of the surrounding rock show an increasing trend and gradually tend to be stable values of 24.09 mm and 25.28 mm; the segment vault has settlement, the maximum settlement is 21.8 mm, the arch bottom has uplift, and the maximum uplift is 24.4 mm. The maximum horizontal displacement of the segment appears on both sides of the arch waist, and the maximum horizontal displacement decreases with the increase of excavation steps; the positive bending moment of the lining segment is mainly distributed on both sides of the arch crown, and the negative bending moment is mainly distributed on both sides of the arch bottom. The axial force of the lining segment is compressive stress, and the maximum axial force is mainly distributed on both sides of the arch waist. The maximum normal shear stress occurs on both sides of the segment arch bottom. The study conclusions provide theoretical foundation and a new guidance for long-term safety evaluation of underwater tunnel structures.","PeriodicalId":21915,"journal":{"name":"Shock and Vibration","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Numerical Simulation of Surrounding Rock Structure Safety of Urban Underwater Shield Tunnel: A Case in Chongqing\",\"authors\":\"Zeng-Qiang Yang, Xiao-Ming You, Hui-Wu Jin\",\"doi\":\"10.1155/2024/9285252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the engineering background of shield construction of a subway section in Chongqing, which needs to pass through a park and there is a lake inside this park, this paper adopts theoretical analysis methods and numerical simulation calculation methods to explore the distribution law of the seepage field and the characteristics of water pressure in lining segments during shield tunneling. The results show that, during the whole excavation of a double-track tunnel with EPB shield, the maximum vertical effective stress is about 4.24 MPa, which is located at the arch foot of the tunnel. The maximum effective stress in the horizontal direction is about 3.61 MPa, which is located on both side walls of the tunnel in the horizontal direction; after the left and right tunnels are excavated in sequence, a “double precipitation funnel-shaped” pore pressure distribution is formed around the tunnel; during the construction of the shield tunnel, the vertical displacement and horizontal displacement of the surrounding rock show an increasing trend and gradually tend to be stable values of 24.09 mm and 25.28 mm; the segment vault has settlement, the maximum settlement is 21.8 mm, the arch bottom has uplift, and the maximum uplift is 24.4 mm. The maximum horizontal displacement of the segment appears on both sides of the arch waist, and the maximum horizontal displacement decreases with the increase of excavation steps; the positive bending moment of the lining segment is mainly distributed on both sides of the arch crown, and the negative bending moment is mainly distributed on both sides of the arch bottom. The axial force of the lining segment is compressive stress, and the maximum axial force is mainly distributed on both sides of the arch waist. The maximum normal shear stress occurs on both sides of the segment arch bottom. The study conclusions provide theoretical foundation and a new guidance for long-term safety evaluation of underwater tunnel structures.\",\"PeriodicalId\":21915,\"journal\":{\"name\":\"Shock and Vibration\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Shock and Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/9285252\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock and Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/9285252","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

基于重庆某地铁区间盾构施工需穿越公园且公园内有湖泊的工程背景,本文采用理论分析方法和数值模拟计算方法,探讨了盾构掘进过程中渗流场的分布规律和衬砌段水压特征。结果表明,EPB盾构双线隧道在整个掘进过程中,最大垂直有效应力约为4.24 MPa,位于隧道拱脚处。水平方向最大有效应力约为 3.61 MPa,位于隧道水平方向两侧壁上;左右隧洞依次掘进后,隧道周边形成 "双沉降漏斗形 "孔隙压力分布;盾构隧道施工过程中,围岩垂直位移和水平位移呈增大趋势,并逐渐趋于稳定,分别为 24.09 mm和25.28 mm;区间拱顶出现沉降,最大沉降量为21.8 mm,拱底出现隆起,最大隆起量为24.4 mm。衬砌段最大水平位移出现在拱腰两侧,随着开挖台阶的增加,最大水平位移减小;衬砌段正弯矩主要分布在拱冠两侧,负弯矩主要分布在拱底两侧。衬砌段的轴向力为压应力,最大轴向力主要分布在拱腰两侧。最大法向剪应力出现在分段拱底两侧。研究结论为水下隧道结构的长期安全评估提供了理论基础和新的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on Numerical Simulation of Surrounding Rock Structure Safety of Urban Underwater Shield Tunnel: A Case in Chongqing
Based on the engineering background of shield construction of a subway section in Chongqing, which needs to pass through a park and there is a lake inside this park, this paper adopts theoretical analysis methods and numerical simulation calculation methods to explore the distribution law of the seepage field and the characteristics of water pressure in lining segments during shield tunneling. The results show that, during the whole excavation of a double-track tunnel with EPB shield, the maximum vertical effective stress is about 4.24 MPa, which is located at the arch foot of the tunnel. The maximum effective stress in the horizontal direction is about 3.61 MPa, which is located on both side walls of the tunnel in the horizontal direction; after the left and right tunnels are excavated in sequence, a “double precipitation funnel-shaped” pore pressure distribution is formed around the tunnel; during the construction of the shield tunnel, the vertical displacement and horizontal displacement of the surrounding rock show an increasing trend and gradually tend to be stable values of 24.09 mm and 25.28 mm; the segment vault has settlement, the maximum settlement is 21.8 mm, the arch bottom has uplift, and the maximum uplift is 24.4 mm. The maximum horizontal displacement of the segment appears on both sides of the arch waist, and the maximum horizontal displacement decreases with the increase of excavation steps; the positive bending moment of the lining segment is mainly distributed on both sides of the arch crown, and the negative bending moment is mainly distributed on both sides of the arch bottom. The axial force of the lining segment is compressive stress, and the maximum axial force is mainly distributed on both sides of the arch waist. The maximum normal shear stress occurs on both sides of the segment arch bottom. The study conclusions provide theoretical foundation and a new guidance for long-term safety evaluation of underwater tunnel structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Shock and Vibration
Shock and Vibration 物理-工程:机械
CiteScore
3.40
自引率
6.20%
发文量
384
审稿时长
3 months
期刊介绍: Shock and Vibration publishes papers on all aspects of shock and vibration, especially in relation to civil, mechanical and aerospace engineering applications, as well as transport, materials and geoscience. Papers may be theoretical or experimental, and either fundamental or highly applied.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信