{"title":"$$l^n_1$$ 中的 $$varepsilon $$ 等分线","authors":"Igor A. Vestfrid","doi":"10.1007/s00010-023-01023-3","DOIUrl":null,"url":null,"abstract":"<p>We show that every <span>\\(\\varepsilon \\)</span>-isometry of the unit ball in <span>\\(l^n_1\\)</span> can be uniformly approximated by an affine surjective isometry to within <span>\\(Cn\\varepsilon \\)</span> for some absolute constant <i>C</i>.\n</p>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$$\\\\varepsilon $$ -isometries in $$l^n_1$$\",\"authors\":\"Igor A. Vestfrid\",\"doi\":\"10.1007/s00010-023-01023-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that every <span>\\\\(\\\\varepsilon \\\\)</span>-isometry of the unit ball in <span>\\\\(l^n_1\\\\)</span> can be uniformly approximated by an affine surjective isometry to within <span>\\\\(Cn\\\\varepsilon \\\\)</span> for some absolute constant <i>C</i>.\\n</p>\",\"PeriodicalId\":55611,\"journal\":{\"name\":\"Aequationes Mathematicae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aequationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00010-023-01023-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00010-023-01023-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We show that every \(\varepsilon \)-isometry of the unit ball in \(l^n_1\) can be uniformly approximated by an affine surjective isometry to within \(Cn\varepsilon \) for some absolute constant C.
期刊介绍:
aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.