{"title":"论小$${mathcal {C}}^{2}$ -扰动的实4-manifolds嵌入复3-manifolds的复点的正常形式结构","authors":"Tadej Starčič","doi":"10.1007/s13398-023-01545-0","DOIUrl":null,"url":null,"abstract":"<p>We extend our previous result on the behaviour of the quadratic part of a complex points of a small <span>\\({\\mathcal {C}}^{2}\\)</span>-perturbation of a real 4-manifold embedded in a complex 3-manifold. We describe the change of the structure of the quadratic normal form of a complex point. It is an immediate consequence of a theorem clarifying how small perturbations can change the bundle of a pair of one arbitrary and one symmetric <span>\\(2\\times 2\\)</span> matrix with respect to an action of a certain linear group.</p>","PeriodicalId":21293,"journal":{"name":"Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On structures of normal forms of complex points of small $${\\\\mathcal {C}}^{2}$$ -perturbations of real 4-manifolds embedded in a complex 3-manifold\",\"authors\":\"Tadej Starčič\",\"doi\":\"10.1007/s13398-023-01545-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We extend our previous result on the behaviour of the quadratic part of a complex points of a small <span>\\\\({\\\\mathcal {C}}^{2}\\\\)</span>-perturbation of a real 4-manifold embedded in a complex 3-manifold. We describe the change of the structure of the quadratic normal form of a complex point. It is an immediate consequence of a theorem clarifying how small perturbations can change the bundle of a pair of one arbitrary and one symmetric <span>\\\\(2\\\\times 2\\\\)</span> matrix with respect to an action of a certain linear group.</p>\",\"PeriodicalId\":21293,\"journal\":{\"name\":\"Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13398-023-01545-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13398-023-01545-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On structures of normal forms of complex points of small $${\mathcal {C}}^{2}$$ -perturbations of real 4-manifolds embedded in a complex 3-manifold
We extend our previous result on the behaviour of the quadratic part of a complex points of a small \({\mathcal {C}}^{2}\)-perturbation of a real 4-manifold embedded in a complex 3-manifold. We describe the change of the structure of the quadratic normal form of a complex point. It is an immediate consequence of a theorem clarifying how small perturbations can change the bundle of a pair of one arbitrary and one symmetric \(2\times 2\) matrix with respect to an action of a certain linear group.