游戏期权定价的两步 Longstaff Schwartz Monte Carlo 方法

Ce Wang
{"title":"游戏期权定价的两步 Longstaff Schwartz Monte Carlo 方法","authors":"Ce Wang","doi":"arxiv-2401.08093","DOIUrl":null,"url":null,"abstract":"We proposed a two-step Longstaff Schwartz Monte Carlo (LSMC) method with two\nregression models fitted at each time step to price game options. Although the\noriginal LSMC can be used to price game options with an enlarged range of path\nin regression and a modified cashflow updating rule, we identified a drawback\nof such approach, which motivated us to propose our approach. We implemented\nnumerical examples with benchmarks using binomial tree and numerical PDE, and\nit showed that our method produces more reliable results comparing to the\noriginal LSMC.","PeriodicalId":501355,"journal":{"name":"arXiv - QuantFin - Pricing of Securities","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Two-Step Longstaff Schwartz Monte Carlo Approach to Game Option Pricing\",\"authors\":\"Ce Wang\",\"doi\":\"arxiv-2401.08093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We proposed a two-step Longstaff Schwartz Monte Carlo (LSMC) method with two\\nregression models fitted at each time step to price game options. Although the\\noriginal LSMC can be used to price game options with an enlarged range of path\\nin regression and a modified cashflow updating rule, we identified a drawback\\nof such approach, which motivated us to propose our approach. We implemented\\nnumerical examples with benchmarks using binomial tree and numerical PDE, and\\nit showed that our method produces more reliable results comparing to the\\noriginal LSMC.\",\"PeriodicalId\":501355,\"journal\":{\"name\":\"arXiv - QuantFin - Pricing of Securities\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Pricing of Securities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2401.08093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Pricing of Securities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.08093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种两步 Longstaff Schwartz Monte Carlo(LSMC)方法,即在每个时间步都拟合两个回归模型来为博弈期权定价。尽管最初的 LSMC 可以通过扩大回归路径范围和修改现金流更新规则来为博弈期权定价,但我们发现了这种方法的一个缺点,这促使我们提出了我们的方法。我们利用二叉树和数值 PDE 实现了基准数值示例,结果表明与原始 LSMC 相比,我们的方法产生了更可靠的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Two-Step Longstaff Schwartz Monte Carlo Approach to Game Option Pricing
We proposed a two-step Longstaff Schwartz Monte Carlo (LSMC) method with two regression models fitted at each time step to price game options. Although the original LSMC can be used to price game options with an enlarged range of path in regression and a modified cashflow updating rule, we identified a drawback of such approach, which motivated us to propose our approach. We implemented numerical examples with benchmarks using binomial tree and numerical PDE, and it showed that our method produces more reliable results comparing to the original LSMC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信